- Source: Time-dependent variational Monte Carlo
The time-dependent variational Monte Carlo (t-VMC) method is a quantum Monte Carlo approach to study the dynamics of closed, non-relativistic quantum systems in the context of the quantum many-body problem. It is an extension of the variational Monte Carlo method, in which a time-dependent pure quantum state is encoded by some variational wave function, generally parametrized as
Ψ
(
X
,
t
)
=
exp
(
∑
k
a
k
(
t
)
O
k
(
X
)
)
{\displaystyle \Psi (X,t)=\exp \left(\sum _{k}a_{k}(t)O_{k}(X)\right)}
where the complex-valued
a
k
(
t
)
{\displaystyle a_{k}(t)}
are time-dependent variational parameters,
X
{\displaystyle X}
denotes a many-body configuration and
O
k
(
X
)
{\displaystyle O_{k}(X)}
are time-independent operators that define the specific ansatz. The time evolution of the parameters
a
k
(
t
)
{\displaystyle a_{k}(t)}
can be found upon imposing a variational principle to the wave function. In particular one can show that the optimal parameters for the evolution satisfy at each time the equation of motion
i
∑
k
′
⟨
O
k
O
k
′
⟩
t
c
a
˙
k
′
=
⟨
O
k
H
⟩
t
c
,
{\displaystyle i\sum _{k^{\prime }}\langle O_{k}O_{k^{\prime }}\rangle _{t}^{c}{\dot {a}}_{k^{\prime }}=\langle O_{k}{\mathcal {H}}\rangle _{t}^{c},}
where
H
{\displaystyle {\mathcal {H}}}
is the Hamiltonian of the system,
⟨
A
B
⟩
t
c
=
⟨
A
B
⟩
t
−
⟨
A
⟩
t
⟨
B
⟩
t
{\displaystyle \langle AB\rangle _{t}^{c}=\langle AB\rangle _{t}-\langle A\rangle _{t}\langle B\rangle _{t}}
are connected averages, and the quantum expectation values are taken over the time-dependent variational wave function, i.e.,
⟨
⋯
⟩
t
≡
⟨
Ψ
(
t
)
|
⋯
|
Ψ
(
t
)
⟩
{\displaystyle \langle \cdots \rangle _{t}\equiv \langle \Psi (t)|\cdots |\Psi (t)\rangle }
.
In analogy with the Variational Monte Carlo approach and following the Monte Carlo method for evaluating integrals, we can interpret
|
Ψ
(
X
,
t
)
|
2
∫
|
Ψ
(
X
,
t
)
|
2
d
X
{\displaystyle {\frac {|\Psi (X,t)|^{2}}{\int |\Psi (X,t)|^{2}\,dX}}}
as a probability distribution function over the multi-dimensional space spanned by the many-body configurations
X
{\displaystyle X}
. The Metropolis–Hastings algorithm is then used to sample exactly from this probability distribution and, at each time
t
{\displaystyle t}
, the quantities entering the equation of motion are evaluated as statistical averages over the sampled configurations. The trajectories
a
(
t
)
{\displaystyle a(t)}
of the variational parameters are then found upon numerical integration of the associated differential equation.
References
G. Carleo; F. Becca; M. Schiró & M. Fabrizio (2012). "Localization and glassy dynamics of many-body quantum systems". Sci. Rep. 2: 243. arXiv:1109.2516. Bibcode:2012NatSR...2E.243C. doi:10.1038/srep00243. PMC 3272662. PMID 22355756.
G. Carleo; F. Becca; L. Sanchez-Palencia; S. Sorella & M. Fabrizio (2014). "Light-cone effect and supersonic correlations in one- and two-dimensional bosonic superfluids". Phys. Rev. A. 89 (3): 031602(R). arXiv:1310.2246. Bibcode:2014PhRvA..89c1602C. doi:10.1103/PhysRevA.89.031602. S2CID 45660254.
G. Carleo (2011). Spectral and dynamical properties of strongly correlated systems (PhD Thesis). pp. 107–128. hdl:20.500.11767/4289.
Kata Kunci Pencarian:
- Time-dependent variational Monte Carlo
- Variational Monte Carlo
- Quantum Monte Carlo
- Giuseppe Carleo
- Particle filter
- Time-dependent density functional theory
- Quantum master equation
- Positron annihilation spectroscopy
- Hartree–Fock method
- Resampling (statistics)