- Source: Toeplitz operator
In operator theory, a Toeplitz operator is the compression of a multiplication operator on the circle to the Hardy space.
Details
Let
S
1
{\displaystyle S^{1}}
be the complex unit circle, with the standard Lebesgue measure, and
L
2
(
S
1
)
{\displaystyle L^{2}(S^{1})}
be the Hilbert space of square-integrable functions. A bounded measurable function
g
{\displaystyle g}
on
S
1
{\displaystyle S^{1}}
defines a multiplication operator
M
g
{\displaystyle M_{g}}
on
L
2
(
S
1
)
{\displaystyle L^{2}(S^{1})}
. Let
P
{\displaystyle P}
be the projection from
L
2
(
S
1
)
{\displaystyle L^{2}(S^{1})}
onto the Hardy space
H
2
{\displaystyle H^{2}}
. The Toeplitz operator with symbol
g
{\displaystyle g}
is defined by
T
g
=
P
M
g
|
H
2
,
{\displaystyle T_{g}=PM_{g}\vert _{H^{2}},}
where " | " means restriction.
A bounded operator on
H
2
{\displaystyle H^{2}}
is Toeplitz if and only if its matrix representation, in the basis
{
z
n
,
z
∈
C
,
n
≥
0
}
{\displaystyle \{z^{n},z\in \mathbb {C} ,n\geq 0\}}
, has constant diagonals.
Theorems
Theorem: If
g
{\displaystyle g}
is continuous, then
T
g
−
λ
{\displaystyle T_{g}-\lambda }
is Fredholm if and only if
λ
{\displaystyle \lambda }
is not in the set
g
(
S
1
)
{\displaystyle g(S^{1})}
. If it is Fredholm, its index is minus the winding number of the curve traced out by
g
{\displaystyle g}
with respect to the origin.
For a proof, see Douglas (1972, p.185). He attributes the theorem to Mark Krein, Harold Widom, and Allen Devinatz. This can be thought of as an important special case of the Atiyah-Singer index theorem.
Axler-Chang-Sarason Theorem: The operator
T
f
T
g
−
T
f
g
{\displaystyle T_{f}T_{g}-T_{fg}}
is compact if and only if
H
∞
[
f
¯
]
∩
H
∞
[
g
]
⊆
H
∞
+
C
0
(
S
1
)
{\displaystyle H^{\infty }[{\bar {f}}]\cap H^{\infty }[g]\subseteq H^{\infty }+C^{0}(S^{1})}
.
Here,
H
∞
{\displaystyle H^{\infty }}
denotes the closed subalgebra of
L
∞
(
S
1
)
{\displaystyle L^{\infty }(S^{1})}
of analytic functions (functions with vanishing negative Fourier coefficients),
H
∞
[
f
]
{\displaystyle H^{\infty }[f]}
is the closed subalgebra of
L
∞
(
S
1
)
{\displaystyle L^{\infty }(S^{1})}
generated by
f
{\displaystyle f}
and
H
∞
{\displaystyle H^{\infty }}
, and
C
0
(
S
1
)
{\displaystyle C^{0}(S^{1})}
is the space (as an algebraic set) of continuous functions on the circle. See S.Axler, S-Y. Chang, D. Sarason (1978).
See also
Toeplitz matrix – Matrix with shifting rows
References
S.Axler, S-Y. Chang, D. Sarason (1978), "Products of Toeplitz operators", Integral Equations and Operator Theory, 1 (3): 285–309, doi:10.1007/BF01682841, S2CID 120610368{{citation}}: CS1 maint: multiple names: authors list (link)
Böttcher, Albrecht; Grudsky, Sergei M. (2000), Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis, Birkhäuser, ISBN 978-3-0348-8395-5.
Böttcher, A.; Silbermann, B. (2006), Analysis of Toeplitz Operators, Springer Monographs in Mathematics (2nd ed.), Springer-Verlag, ISBN 978-3-540-32434-8.
Douglas, Ronald (1972), Banach Algebra techniques in Operator theory, Academic Press.
Rosenblum, Marvin; Rovnyak, James (1985), Hardy Classes and Operator Theory, Oxford University Press. Reprinted by Dover Publications, 1997, ISBN 978-0-486-69536-5.
Kata Kunci Pencarian:
- Daftar topik analisis fungsional
- Sekolah Film Nasional di Łódź
- Daftar masalah matematika yang belum terpecahkan
- Toeplitz operator
- Toeplitz matrix
- Otto Toeplitz
- Toeplitz
- Multiplication operator
- Hellinger–Toeplitz theorem
- Toeplitz algebra
- Fredholm operator
- Operator theory
- Positive operator