- Source: Triangle group
- Source: Triangle Group
In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action.
Definition
Let l, m, n be integers greater than or equal to 2. A triangle group Δ(l,m,n) is a group of motions of the Euclidean plane, the two-dimensional sphere, the real projective plane, or the hyperbolic plane generated by the reflections in the sides of a triangle with angles π/l, π/m and π/n (measured in radians). The product of the reflections in two adjacent sides is a rotation by the angle which is twice the angle between those sides, 2π/l, 2π/m and 2π/n. Therefore, if the generating reflections are labeled a, b, c and the angles between them in the cyclic order are as given above, then the following relations hold:
a
2
=
b
2
=
c
2
=
1
{\displaystyle a^{2}=b^{2}=c^{2}=1}
(
a
b
)
l
=
(
b
c
)
n
=
(
c
a
)
m
=
1.
{\displaystyle (ab)^{l}=(bc)^{n}=(ca)^{m}=1.}
It is a theorem that all other relations between a, b, c are consequences of these relations and that Δ(l,m,n) is a discrete group of motions of the corresponding space. Thus a triangle group is a reflection group that admits a group presentation
Δ
(
l
,
m
,
n
)
=
⟨
a
,
b
,
c
∣
a
2
=
b
2
=
c
2
=
(
a
b
)
l
=
(
b
c
)
n
=
(
c
a
)
m
=
1
⟩
.
{\displaystyle \Delta (l,m,n)=\langle a,b,c\mid a^{2}=b^{2}=c^{2}=(ab)^{l}=(bc)^{n}=(ca)^{m}=1\rangle .}
An abstract group with this presentation is a Coxeter group with three generators.
Classification
Given any natural numbers l, m, n > 1 exactly one of the classical two-dimensional geometries (Euclidean, spherical, or hyperbolic) admits a triangle with the angles (π/l, π/m, π/n), and the space is tiled by reflections of the triangle. The sum of the angles of the triangle determines the type of the geometry by the Gauss–Bonnet theorem: it is Euclidean if the angle sum is exactly π, spherical if it exceeds π and hyperbolic if it is strictly smaller than π. Moreover, any two triangles with the given angles are congruent. Each triangle group determines a tiling, which is conventionally colored in two colors, so that any two adjacent tiles have opposite colors.
In terms of the numbers l, m, n > 1 there are the following possibilities.
= The Euclidean case
=1
l
+
1
m
+
1
n
=
1.
{\displaystyle {\frac {1}{l}}+{\frac {1}{m}}+{\frac {1}{n}}=1.}
The triangle group is the infinite symmetry group of a certain tessellation (or tiling) of the Euclidean plane by triangles whose angles add up to π (or 180°). Up to permutations, the triple (l, m, n) is one of the triples (2,3,6), (2,4,4), (3,3,3). The corresponding triangle groups are instances of wallpaper groups.
= The spherical case
=1
l
+
1
m
+
1
n
>
1.
{\displaystyle {\frac {1}{l}}+{\frac {1}{m}}+{\frac {1}{n}}>1.}
The triangle group is the finite symmetry group of a tiling of a unit sphere by spherical triangles, or Möbius triangles, whose angles add up to a number greater than π. Up to permutations, the triple (l,m,n) has the form (2,3,3), (2,3,4), (2,3,5), or (2,2,n), n > 1. Spherical triangle groups can be identified with the symmetry groups of regular polyhedra in the three-dimensional Euclidean space: Δ(2,3,3) corresponds to the tetrahedron, Δ(2,3,4) to both the cube and the octahedron (which have the same symmetry group), Δ(2,3,5) to both the dodecahedron and the icosahedron. The groups Δ(2,2,n), n > 1 of dihedral symmetry can be interpreted as the symmetry groups of the family of dihedra, which are degenerate solids formed by two identical regular n-gons joined together, or dually hosohedra, which are formed by joining n digons together at two vertices.
The spherical tiling corresponding to a regular polyhedron is obtained by forming the barycentric subdivision of the polyhedron and projecting the resulting points and lines onto the circumscribed sphere. In the case of the tetrahedron, there are four faces and each face is an equilateral triangle that is subdivided into 6 smaller pieces by the medians intersecting in the center. The resulting tesselation has 4 × 6=24 spherical triangles (it is the spherical disdyakis cube).
These groups are finite, which corresponds to the compactness of the sphere – areas of discs in the sphere initially grow in terms of radius, but eventually cover the entire sphere.
The triangular tilings are depicted below:
Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even n are centrally symmetric. Hence each of them determines a tiling of the real projective plane, an elliptic tiling. Its symmetry group is the quotient of the spherical triangle group by the reflection through the origin (-I), which is a central element of order 2. Since the projective plane is a model of elliptic geometry, such groups are called elliptic triangle groups.
= The hyperbolic case
=1
l
+
1
m
+
1
n
<
1.
{\displaystyle {\frac {1}{l}}+{\frac {1}{m}}+{\frac {1}{n}}<1.}
The triangle group is the infinite symmetry group of a tiling of the hyperbolic plane by hyperbolic triangles whose angles add up to a number less than π. All triples not already listed represent tilings of the hyperbolic plane. For example, the triple (2,3,7) produces the (2,3,7) triangle group. There are infinitely many such groups; the tilings associated with some small values:
Hyperbolic plane
Hyperbolic triangle groups are examples of non-Euclidean crystallographic group and have been generalized in the theory of Gromov hyperbolic groups.
Von Dyck groups
Denote by D(l,m,n) the subgroup of index 2 in Δ(l,m,n) generated by words of even length in the generators. Such subgroups are sometimes referred to as "ordinary" triangle groups or von Dyck groups, after Walther von Dyck. For spherical, Euclidean, and hyperbolic triangles, these correspond to the elements of the group that preserve the orientation of the triangle – the group of rotations. For projective (elliptic) triangles, they cannot be so interpreted, as the projective plane is non-orientable, so there is no notion of "orientation-preserving". The reflections are however locally orientation-reversing (and every manifold is locally orientable, because locally Euclidean): they fix a line and at each point in the line are a reflection across the line.
The group D(l,m,n) is defined by the following presentation:
D
(
l
,
m
,
n
)
=
⟨
x
,
y
∣
x
l
,
y
m
,
(
x
y
)
n
⟩
.
{\displaystyle D(l,m,n)=\langle x,y\mid x^{l},y^{m},(xy)^{n}\rangle .}
In terms of the generators above, these are x = ab, y = ca, yx = cb. Geometrically, the three elements x, y, xy correspond to rotations by 2π/l, 2π/m and 2π/n about the three vertices of the triangle.
Note that D(l,m,n) ≅ D(m,l,n) ≅ D(n,m,l), so D(l,m,n) is independent of the order of the l,m,n.
A hyperbolic von Dyck group is a Fuchsian group, a discrete group consisting of orientation-preserving isometries of the hyperbolic plane.
Overlapping tilings
Triangle groups preserve a tiling by triangles, namely a fundamental domain for the action (the triangle defined by the lines of reflection), called a Möbius triangle, and are given by a triple of integers, (l,m,n), – integers correspond to (2l,2m,2n) triangles coming together at a vertex. There are also tilings by overlapping triangles, which correspond to Schwarz triangles with rational numbers (l/a,m/b,n/c), where the denominators are coprime to the numerators. This corresponds to edges meeting at angles of aπ/l (resp.), which corresponds to a rotation of 2aπ/l (resp.), which has order l and is thus identical as an abstract group element, but distinct when represented by a reflection.
For example, the Schwarz triangle (2 3 3) yields a density 1 tiling of the sphere, while the triangle (2 3/2 3) yields a density 3 tiling of the sphere, but with the same abstract group. These symmetries of overlapping tilings are not considered triangle groups.
History
Triangle groups date at least to the presentation of the icosahedral group as the (rotational) (2,3,5) triangle group by William Rowan Hamilton in 1856, in his paper on icosian calculus.
Applications
Triangle groups arise in arithmetic geometry. The modular group is generated by two elements, S and T, subject to the relations S² = (ST)³ = 1 (no relation on T), is the rotational triangle group (2,3,∞) and maps onto all triangle groups (2,3,n) by adding the relation Tn = 1. More generally, the Hecke group Hq is generated by two elements, S and T, subject to the relations S2 = (ST)q = 1 (no relation on T), is the rotational triangle group (2,q,∞), and maps onto all triangle groups (2,q,n) by adding the relation Tn = 1 the modular group is the Hecke group H3. In Grothendieck's theory of dessins d'enfants, a Belyi function gives rise to a tessellation of a Riemann surface by reflection domains of a triangle group.
All 26 sporadic groups are quotients of triangle groups, of which 12 are Hurwitz groups (quotients of the (2,3,7) group).
See also
Schwarz triangle
The Schwarz triangle map is a map of triangles to the upper half-plane.
Geometric group theory
References
External links
Elizabeth r chen triangle groups (2010) desktop background pictures
This article incorporates material from Triangle groups on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
Triangle Group (Chinese: 三角輪胎; also known as Triangle Tyre) is a Chinese tire company that manufactures a range of tires for vehicles from passenger cars to construction equipment and tires fit for special purposes under the Triangle and DIAMONDBACK brands. As of 2015 it is the 14th largest tire maker in the world according to Tyres & Accessories.
History
Triangle Group was founded by the Weihai government in 1976. Lacking a car industry in China, the company supplied tiny tires to Indonesian street-sweepers rubbish carts in the following years. The company grew in size but did not make money until in 1993 with the installment of new management, Triangle reworked itself into a competitive enterprise. In making dramatic reforms, the company invested in new, more modern production and implemented strict workforce discipline. The restructuring would continue into the 2000s, when the company considered a public offering and so brought its accounting to developed world standards and continuously invested in more sophisticated manufacturing lines. These efforts to make itself a top league tire maker would be the subject of a profile article in The Economist during June 2008.
In recent years, the company has focused more on research and development, announcing a desire to become a technology leader, through research partnerships with universities. In 2011, it signed an agreement with the University of Akron to work together on polymer research and also opened an office in the same town of Akron, Ohio with plans for 30 employees. It partnered up in 2012 with the Harbin Institute of Technology to carry out research on designing and manufacturing tires for large-bodied aircraft, enabling Triangle to compete with two other companies in China that already produce such tires.
In 2015, Triangle Group announced its first venture into the U.S. market with the opening of their new North American headquarters in Franklin, Tennessee inside the Nashville Metropolitan Area, and in late 2017 selected Edgecombe County, North Carolina as the location for its first manufacturing facility in the United States where it expects to manufacture six million tires annually. In May 2022 the company has scrapped a project due to "a change in investment environment" and other factors such as COVID. Thus, the China manufacturer refused to build its first foreign plant.
All Triangle Tire factories are located in Weihai prefecture-level city, Shandong province, eastern China:
Huasheng Plant specializes in the production of passenger vehicle tires and giant tires, radial tires engineering.
Huamao Plant specializes in the production of commercial vehicle tires.
Huayang Plant specializes in the production of high-performance tires for passenger cars and SUVs.
Huada Plant specializes in tire retreading.
Huaxin Plant specializes in bias tire engineering.
At the start of 2016, Triangle truck and bus tyres started being distributed by multinational distributor Zenises.
In December 2021 the company has launched a mobile app for Android and iOS smartphones. It includes all products for the European market, from passenger to TBR and earthmoving tires..
Products
The company works as a strategic partner and supplier to many overseas companies. It has struck partnerships with Caterpillar, Volvo, and Goodyear. In terms of market share success, the company's most dominant placement is in the off the road (OTR) category, which includes tires for mining, construction, and other industrial uses. It is the 4th largest manufacturer of OTR tires with the company shipping 90% of its OTR stock to export markets.
References
Kata Kunci Pencarian:
- Viar Motor Indonesia
- ABB Group
- Serial Experiments Lain
- Tours Duo
- GSK plc
- Monorail KL
- Kadokawa Corporation
- Brazzers
- Mia Khalifa
- Anita Loos
- Triangle group
- Triangle Group
- (2,3,7) triangle group
- Schwarz triangle
- Modular group
- Bermuda Triangle
- Iron triangle (US politics)
- Triangle Shirtwaist Factory fire
- Isosceles triangle
- Set square