- Source: Universal Taylor series
A universal Taylor series is a formal power series
∑
n
=
1
∞
a
n
x
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}x^{n}}
, such that for every continuous function
h
{\displaystyle h}
on
[
−
1
,
1
]
{\displaystyle [-1,1]}
, if
h
(
0
)
=
0
{\displaystyle h(0)=0}
, then there exists an increasing sequence
(
λ
n
)
{\displaystyle \left(\lambda _{n}\right)}
of positive integers such that
lim
n
→
∞
‖
∑
k
=
1
λ
n
a
k
x
k
−
h
(
x
)
‖
=
0
{\displaystyle \lim _{n\to \infty }\left\|\sum _{k=1}^{\lambda _{n}}a_{k}x^{k}-h(x)\right\|=0}
In other words, the set of partial sums of
∑
n
=
1
∞
a
n
x
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}x^{n}}
is dense (in sup-norm) in
C
[
−
1
,
1
]
0
{\displaystyle C[-1,1]_{0}}
, the set of continuous functions on
[
−
1
,
1
]
{\displaystyle [-1,1]}
that is zero at origin.
Statements and proofs
Fekete proved that a universal Taylor series exists.
References
Kata Kunci Pencarian:
- Fokker Super Universal
- Fifty Shades of Grey (film)
- Daftar penghargaan dan nominasi yang diterima oleh Taylor Swift
- Midnights
- Corey Taylor
- Britania Raya
- Perang Dunia II
- MrBeast
- Kleopatra
- Kosmopolitanisme
- Universal Taylor series
- Fifty Shades (film series)
- Frankenstein (Universal film series)
- Taylor Lautner
- Taylor Kitsch
- Dracula (Universal film series)
- Taylor Cole
- Universal Monsters
- Universal Soldier (1992 film)
- Universal Music Group