daftar integral dari fungsi eksponensial

Video: daftar integral dari fungsi eksponensial

    Daftar integral dari fungsi eksponensial GudangMovies21 Rebahinxxi LK21

    Daftar integral (antiderivatif) dari fungsi eksponensial. Untuk daftar lengkap fungsi integral, lihat Tabel integral.
    Dalam semua rumus, konstanta a diasumsikan bukan nol.


    Integral tak tentu


    Integral tak tentu adalah fungsi-fungsi antiderivatif. Sebuah konstanta (yaitu konstanta integrasi) dapat ditambahkan pada sisi kanan dari rumus ini, tetapi tidak dituliskan di sini demi kesederhanaan.


    = Integral melibatkan hanya fungsi eksponensial

    =







    f



    (
    x
    )

    e

    f
    (
    x
    )




    d

    x
    =

    e

    f
    (
    x
    )




    {\displaystyle \int \mathrm {f} '(x)e^{f(x)}\;\mathrm {d} x=e^{f(x)}}







    e

    c
    x




    d

    x
    =


    1
    c



    e

    c
    x




    {\displaystyle \int e^{cx}\;\mathrm {d} x={\frac {1}{c}}e^{cx}}







    a

    c
    x




    d

    x
    =


    1

    c

    ln

    a




    a

    c
    x




    {\displaystyle \int a^{cx}\;\mathrm {d} x={\frac {1}{c\cdot \ln a}}a^{cx}}

    for



    a
    >
    0
    ,

    a

    1


    {\displaystyle a>0,\ a\neq 1}



    = Integral melibatkan fungsi eksponensial dan pangkat

    =





    x

    e

    c
    x




    d

    x
    =



    e

    c
    x



    c

    2




    (
    c
    x

    1
    )


    {\displaystyle \int xe^{cx}\;\mathrm {d} x={\frac {e^{cx}}{c^{2}}}(cx-1)}


    \int xe^{-cx}\; \mathrm{d}x =x \frac{1}{-c}e^{-cx}






    x

    2



    e

    c
    x




    d

    x
    =

    e

    c
    x



    (




    x

    2


    c






    2
    x


    c

    2




    +


    2

    c

    3





    )



    {\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}







    x

    n



    e

    c
    x




    d

    x
    =


    1
    c



    x

    n



    e

    c
    x





    n
    c




    x

    n

    1



    e

    c
    x



    d

    x
    =


    (





    c



    )


    n





    e

    c
    x


    c


    =

    e

    c
    x





    i
    =
    0


    n


    (

    1

    )

    i






    n
    !


    (
    n

    i
    )
    !


    c

    i
    +
    1







    x

    n

    i




    {\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x=\left({\frac {\partial }{\partial c}}\right)^{n}{\frac {e^{cx}}{c}}=e^{cx}\sum _{i=0}^{n}(-1)^{i}\,{\frac {n!}{(n-i)!\,c^{i+1}}}\,x^{n-i}}









    e

    c
    x


    x




    d

    x
    =
    ln


    |

    x

    |

    +



    n
    =
    1








    (
    c
    x

    )

    n




    n

    n
    !





    {\displaystyle \int {\frac {e^{cx}}{x}}\;\mathrm {d} x=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}}









    e

    c
    x



    x

    n






    d

    x
    =


    1

    n

    1




    (





    e

    c
    x



    x

    n

    1




    +
    c




    e

    c
    x



    x

    n

    1






    d

    x

    )




    (for


    n

    1


    )




    {\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}



    = Integral melibatkan fungsi eksponensial dan trigonometri

    =






    e

    c
    x


    sin

    b
    x


    d

    x
    =



    e

    c
    x




    c

    2


    +

    b

    2





    (
    c
    sin

    b
    x

    b
    cos

    b
    x
    )
    =



    e

    c
    x




    c

    2


    +

    b

    2





    sin

    (
    b
    x

    ϕ
    )

    cos

    (
    ϕ
    )
    =


    c


    c

    2


    +

    b

    2







    {\displaystyle \int e^{cx}\sin bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)={\frac {e^{cx}}{\sqrt {c^{2}+b^{2}}}}\sin(bx-\phi )\qquad \cos(\phi )={\frac {c}{\sqrt {c^{2}+b^{2}}}}}







    e

    c
    x


    cos

    b
    x


    d

    x
    =



    e

    c
    x




    c

    2


    +

    b

    2





    (
    c
    cos

    b
    x
    +
    b
    sin

    b
    x
    )
    =



    e

    c
    x




    c

    2


    +

    b

    2





    cos

    (
    b
    x

    ϕ
    )

    cos

    (
    ϕ
    )
    =


    c


    c

    2


    +

    b

    2







    {\displaystyle \int e^{cx}\cos bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)={\frac {e^{cx}}{\sqrt {c^{2}+b^{2}}}}\cos(bx-\phi )\qquad \cos(\phi )={\frac {c}{\sqrt {c^{2}+b^{2}}}}}







    e

    c
    x



    sin

    n



    x


    d

    x
    =




    e

    c
    x



    sin

    n

    1



    x



    c

    2


    +

    n

    2





    (
    c
    sin

    x

    n
    cos

    x
    )
    +



    n
    (
    n

    1
    )



    c

    2


    +

    n

    2







    e

    c
    x



    sin

    n

    2



    x


    d

    x


    {\displaystyle \int e^{cx}\sin ^{n}x\;\mathrm {d} x={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;\mathrm {d} x}







    e

    c
    x



    cos

    n



    x


    d

    x
    =




    e

    c
    x



    cos

    n

    1



    x



    c

    2


    +

    n

    2





    (
    c
    cos

    x
    +
    n
    sin

    x
    )
    +



    n
    (
    n

    1
    )



    c

    2


    +

    n

    2







    e

    c
    x



    cos

    n

    2



    x


    d

    x


    {\displaystyle \int e^{cx}\cos ^{n}x\;\mathrm {d} x={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;\mathrm {d} x}



    = Integral melibatkan fungsi kesalahan

    =






    e

    c
    x


    ln

    x


    d

    x
    =


    1
    c



    (


    e

    c
    x


    ln


    |

    x

    |


    Ei

    (
    c
    x
    )

    )



    {\displaystyle \int e^{cx}\ln x\;\mathrm {d} x={\frac {1}{c}}\left(e^{cx}\ln |x|-\operatorname {Ei} \,(cx)\right)}






    x

    e

    c

    x

    2






    d

    x
    =


    1

    2
    c





    e

    c

    x

    2






    {\displaystyle \int xe^{cx^{2}}\;\mathrm {d} x={\frac {1}{2c}}\;e^{cx^{2}}}







    e


    c

    x

    2






    d

    x
    =



    π

    4
    c




    erf

    (


    c


    x
    )


    {\displaystyle \int e^{-cx^{2}}\;\mathrm {d} x={\sqrt {\frac {\pi }{4c}}}\operatorname {erf} ({\sqrt {c}}x)}

    (



    erf


    {\displaystyle \operatorname {erf} }

    adalah suatu fungsi error)





    x

    e


    c

    x

    2






    d

    x
    =



    1

    2
    c




    e


    c

    x

    2






    {\displaystyle \int xe^{-cx^{2}}\;\mathrm {d} x=-{\frac {1}{2c}}e^{-cx^{2}}}









    e



    x

    2





    x

    2






    d

    x
    =




    e



    x

    2




    x





    π



    e
    r
    f

    (
    x
    )


    {\displaystyle \int {\frac {e^{-x^{2}}}{x^{2}}}\;\mathrm {d} x=-{\frac {e^{-x^{2}}}{x}}-{\sqrt {\pi }}\mathrm {erf} (x)}









    1

    σ


    2
    π






    e




    1
    2




    (



    x

    μ

    σ


    )


    2







    d

    x
    =


    1
    2



    (

    erf




    x

    μ


    σ


    2






    )



    {\displaystyle \int {{\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {x-\mu }{\sigma }}\right)^{2}}}\;\mathrm {d} x={\frac {1}{2}}\left(\operatorname {erf} \,{\frac {x-\mu }{\sigma {\sqrt {2}}}}\right)}



    = Integral lain-lain

    =






    e


    x

    2






    d

    x
    =

    e


    x

    2





    (




    j
    =
    0


    n

    1



    c

    2
    j





    1

    x

    2
    j
    +
    1





    )

    +
    (
    2
    n

    1
    )

    c

    2
    n

    2






    e


    x

    2





    x

    2
    n






    d

    x



    valid untuk setiap


    n
    >
    0
    ,


    {\displaystyle \int e^{x^{2}}\,\mathrm {d} x=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;\mathrm {d} x\quad {\mbox{valid untuk setiap }}n>0,}


    di mana




    c

    2
    j


    =



    1

    3

    5

    (
    2
    j

    1
    )


    2

    j
    +
    1




    =



    (
    2
    j
    )

    !


    j
    !


    2

    2
    j
    +
    1






    .


    {\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}\ .}


    (Perhatikan bahwa nilai ekspresi ini independen atau tidak tergantung dari nilai



    n


    {\displaystyle n}

    , karena itu tidak muncul dalam integral.)










    x


    x







    x












    m



    d
    x
    =



    n
    =
    0


    m





    (

    1

    )

    n


    (
    n
    +
    1

    )

    n

    1




    n
    !



    Γ
    (
    n
    +
    1
    ,

    ln

    x
    )
    +



    n
    =
    m
    +
    1





    (

    1

    )

    n



    a

    m
    n


    Γ
    (
    n
    +
    1
    ,

    ln

    x
    )



    (for


    x
    >
    0


    )





    {\displaystyle {\int \underbrace {x^{x^{\cdot ^{\cdot ^{x}}}}} _{m}\,dx=\sum _{n=0}^{m}{\frac {(-1)^{n}(n+1)^{n-1}}{n!}}\Gamma (n+1,-\ln x)+\sum _{n=m+1}^{\infty }(-1)^{n}a_{mn}\Gamma (n+1,-\ln x)\qquad {\mbox{(for }}x>0{\mbox{)}}}}


    di mana




    a

    m
    n


    =


    {



    1



    jika

    n
    =
    0
    ,






    1

    n
    !






    jika

    m
    =
    1
    ,






    1
    n





    j
    =
    1


    n


    j

    a

    m
    ,
    n

    j



    a

    m

    1
    ,
    j

    1





    selainnya









    {\displaystyle a_{mn}={\begin{cases}1&{\text{jika }}n=0,\\{\frac {1}{n!}}&{\text{jika }}m=1,\\{\frac {1}{n}}\sum _{j=1}^{n}ja_{m,n-j}a_{m-1,j-1}&{\text{selainnya}}\end{cases}}}


    dan



    Γ
    (
    x
    ,
    y
    )


    {\displaystyle \Gamma (x,y)}

    adalah fungsi gamma







    1

    a

    e

    λ
    x


    +
    b





    d

    x
    =


    x
    b





    1

    b
    λ



    ln


    (

    a

    e

    λ
    x


    +
    b

    )




    {\displaystyle \int {\frac {1}{ae^{\lambda x}+b}}\;\mathrm {d} x={\frac {x}{b}}-{\frac {1}{b\lambda }}\ln \left(ae^{\lambda x}+b\right)\,}

    ketika



    b

    0


    {\displaystyle b\neq 0}

    ,



    λ

    0


    {\displaystyle \lambda \neq 0}

    , dan



    a

    e

    λ
    x


    +
    b
    >
    0

    .


    {\displaystyle ae^{\lambda x}+b>0\,.}









    e

    2
    λ
    x



    a

    e

    λ
    x


    +
    b





    d

    x
    =


    1


    a

    2


    λ




    [

    a

    e

    λ
    x


    +
    b

    b
    ln


    (

    a

    e

    λ
    x


    +
    b

    )


    ]




    {\displaystyle \int {\frac {e^{2\lambda x}}{ae^{\lambda x}+b}}\;\mathrm {d} x={\frac {1}{a^{2}\lambda }}\left[ae^{\lambda x}+b-b\ln \left(ae^{\lambda x}+b\right)\right]\,}

    ketika



    a

    0


    {\displaystyle a\neq 0}

    ,



    λ

    0


    {\displaystyle \lambda \neq 0}

    , dan



    a

    e

    λ
    x


    +
    b
    >
    0

    .


    {\displaystyle ae^{\lambda x}+b>0\,.}



    Integral tertentu









    0


    1



    e

    x

    ln

    a
    +
    (
    1

    x
    )

    ln

    b




    d

    x
    =



    0


    1




    (


    a
    b


    )


    x



    b


    d

    x
    =



    0


    1



    a

    x




    b

    1

    x




    d

    x
    =



    a

    b


    ln

    a

    ln

    b





    {\displaystyle \int _{0}^{1}e^{x\cdot \ln a+(1-x)\cdot \ln b}\;\mathrm {d} x=\int _{0}^{1}\left({\frac {a}{b}}\right)^{x}\cdot b\;\mathrm {d} x=\int _{0}^{1}a^{x}\cdot b^{1-x}\;\mathrm {d} x={\frac {a-b}{\ln a-\ln b}}}

    untuk



    a
    >
    0
    ,

    b
    >
    0
    ,

    a

    b


    {\displaystyle a>0,\ b>0,\ a\neq b}

    , yang merupakan rata-rata logaritme







    0






    e

    a
    x




    d

    x
    =


    1


    a




    (
    Re

    (
    a
    )
    <
    0
    )


    {\displaystyle \int _{0}^{\infty }e^{ax}\,\mathrm {d} x={\frac {1}{-a}}\quad (\operatorname {Re} (a)<0)}








    0






    e


    a

    x

    2






    d

    x
    =


    1
    2





    π
    a




    (
    a
    >
    0
    )


    {\displaystyle \int _{0}^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a}}\quad (a>0)}

    (Integral Gaussian)















    e


    a

    x

    2






    d

    x
    =



    π
    a




    (
    a
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\sqrt {\pi \over a}}\quad (a>0)}
















    e


    a

    x

    2





    e


    2
    b
    x




    d

    x
    =



    π
    a




    e



    b

    2


    a




    (
    a
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}e^{-2bx}\,\mathrm {d} x={\sqrt {\frac {\pi }{a}}}e^{\frac {b^{2}}{a}}\quad (a>0)}

    (lihat Integral suatu fungsi Gaussian)














    x

    e


    a
    (
    x

    b

    )

    2






    d

    x
    =
    b



    π
    a




    (
    Re

    (
    a
    )
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,\mathrm {d} x=b{\sqrt {\frac {\pi }{a}}}\quad (\operatorname {Re} (a)>0)}















    x

    e


    a

    x

    2


    +
    b
    x




    d

    x
    =





    π


    b


    2

    a

    3

    /

    2






    e



    b

    2



    4
    a





    (
    Re

    (
    a
    )
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }xe^{-ax^{2}+bx}\,\mathrm {d} x={\frac {{\sqrt {\pi }}b}{2a^{3/2}}}e^{\frac {b^{2}}{4a}}\quad (\operatorname {Re} (a)>0)}
















    x

    2



    e


    a

    x

    2






    d

    x
    =


    1
    2





    π

    a

    3






    (
    a
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}\quad (a>0)}
















    x

    2



    e


    a

    x

    2



    b
    x




    d

    x
    =





    π


    (
    2
    a
    +

    b

    2


    )


    4

    a

    5

    /

    2






    e



    b

    2



    4
    a





    (
    Re

    (
    a
    )
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}-bx}\,\mathrm {d} x={\frac {{\sqrt {\pi }}(2a+b^{2})}{4a^{5/2}}}e^{\frac {b^{2}}{4a}}\quad (\operatorname {Re} (a)>0)}
















    x

    3



    e


    a

    x

    2


    +
    b
    x




    d

    x
    =





    π


    (
    6
    a
    +

    b

    2


    )
    b


    8

    a

    7

    /

    2






    e



    b

    2



    4
    a





    (
    Re

    (
    a
    )
    >
    0
    )


    {\displaystyle \int _{-\infty }^{\infty }x^{3}e^{-ax^{2}+bx}\,\mathrm {d} x={\frac {{\sqrt {\pi }}(6a+b^{2})b}{8a^{7/2}}}e^{\frac {b^{2}}{4a}}\quad (\operatorname {Re} (a)>0)}








    0






    x

    n



    e


    a

    x

    2






    d

    x
    =


    {





    1
    2


    Γ

    (



    n
    +
    1

    2


    )


    /


    a



    n
    +
    1

    2





    (
    n
    >

    1
    ,
    a
    >
    0
    )







    (
    2
    k

    1
    )
    !
    !



    2

    k
    +
    1



    a

    k








    π
    a





    (
    n
    =
    2
    k
    ,
    k


    integer

    ,
    a
    >
    0
    )







    k
    !


    2

    a

    k
    +
    1







    (
    n
    =
    2
    k
    +
    1
    ,
    k


    integer

    ,
    a
    >
    0
    )








    {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{2}}\,\mathrm {d} x={\begin{cases}{\frac {1}{2}}\Gamma \left({\frac {n+1}{2}}\right)/a^{\frac {n+1}{2}}&(n>-1,a>0)\\{\frac {(2k-1)!!}{2^{k+1}a^{k}}}{\sqrt {\frac {\pi }{a}}}&(n=2k,k\;{\text{integer}},a>0)\\{\frac {k!}{2a^{k+1}}}&(n=2k+1,k\;{\text{integer}},a>0)\end{cases}}}

    (!! merupakan faktorial ganda)







    0






    x

    n



    e


    a
    x




    d

    x
    =


    {






    Γ
    (
    n
    +
    1
    )


    a

    n
    +
    1






    (
    n
    >

    1
    ,
    a
    >
    0
    )







    n
    !


    a

    n
    +
    1






    (
    n
    =
    0
    ,
    1
    ,
    2
    ,

    ,
    a
    >
    0
    )








    {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\,\mathrm {d} x={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}}}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}}}&(n=0,1,2,\ldots ,a>0)\\\end{cases}}}








    0


    1



    x

    n



    e


    a
    x




    d

    x
    =



    n
    !


    a

    n
    +
    1





    [

    1


    e


    a





    i
    =
    0


    n





    a

    i



    i
    !




    ]



    {\displaystyle \int _{0}^{1}x^{n}e^{-ax}\,\mathrm {d} x={\frac {n!}{a^{n+1}}}\left[1-e^{-a}\sum _{i=0}^{n}{\frac {a^{i}}{i!}}\right]}








    0






    e


    a

    x

    b




    d
    x
    =


    1
    b




    a




    1
    b





    Γ

    (


    1
    b


    )



    {\displaystyle \int _{0}^{\infty }e^{-ax^{b}}dx={\frac {1}{b}}\ a^{-{\frac {1}{b}}}\,\Gamma \left({\frac {1}{b}}\right)}








    0






    x

    n



    e


    a

    x

    b




    d
    x
    =


    1
    b




    a





    n
    +
    1

    b





    Γ

    (



    n
    +
    1

    b


    )



    {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{b}}dx={\frac {1}{b}}\ a^{-{\frac {n+1}{b}}}\,\Gamma \left({\frac {n+1}{b}}\right)}








    0






    e


    a
    x


    sin

    b
    x


    d

    x
    =


    b


    a

    2


    +

    b

    2






    (
    a
    >
    0
    )


    {\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,\mathrm {d} x={\frac {b}{a^{2}+b^{2}}}\quad (a>0)}








    0






    e


    a
    x


    cos

    b
    x


    d

    x
    =


    a


    a

    2


    +

    b

    2






    (
    a
    >
    0
    )


    {\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,\mathrm {d} x={\frac {a}{a^{2}+b^{2}}}\quad (a>0)}








    0





    x

    e


    a
    x


    sin

    b
    x


    d

    x
    =



    2
    a
    b


    (

    a

    2


    +

    b

    2



    )

    2






    (
    a
    >
    0
    )


    {\displaystyle \int _{0}^{\infty }xe^{-ax}\sin bx\,\mathrm {d} x={\frac {2ab}{(a^{2}+b^{2})^{2}}}\quad (a>0)}








    0





    x

    e


    a
    x


    cos

    b
    x


    d

    x
    =




    a

    2




    b

    2




    (

    a

    2


    +

    b

    2



    )

    2






    (
    a
    >
    0
    )


    {\displaystyle \int _{0}^{\infty }xe^{-ax}\cos bx\,\mathrm {d} x={\frac {a^{2}-b^{2}}{(a^{2}+b^{2})^{2}}}\quad (a>0)}








    0


    2
    π



    e

    x
    cos

    θ


    d
    θ
    =
    2
    π

    I

    0


    (
    x
    )


    {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}

    (




    I

    0




    {\displaystyle I_{0}}

    adalah modifikasi fungsi Bessel dari jenis pertama)







    0


    2
    π



    e

    x
    cos

    θ
    +
    y
    sin

    θ


    d
    θ
    =
    2
    π

    I

    0



    (



    x

    2


    +

    y

    2




    )



    {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}



    Pranala luar


    Wolfram Mathematica Online Integrator
    V. H. Moll, The Integrals in Gradshteyn and Ryzhik

Kata Kunci Pencarian: daftar integral dari fungsi eksponensial