dilogarithm

      Dilogarithm GudangMovies21 Rebahinxxi LK21

      In mathematics, the dilogarithm (or Spence's function), denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:





      Li

      2



      (
      z
      )
      =




      0


      z





      ln

      (
      1

      u
      )

      u



      d
      u

      ,

      z


      C



      {\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-u) \over u}\,du{\text{, }}z\in \mathbb {C} }


      and its reflection.
      For |z| ≤ 1, an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):





      Li

      2



      (
      z
      )
      =



      k
      =
      1








      z

      k



      k

      2




      .


      {\displaystyle \operatorname {Li} _{2}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{2}}.}


      Alternatively, the dilogarithm function is sometimes defined as







      1


      v





      ln

      t


      1

      t



      d
      t
      =

      Li

      2



      (
      1

      v
      )
      .


      {\displaystyle \int _{1}^{v}{\frac {\ln t}{1-t}}dt=\operatorname {Li} _{2}(1-v).}


      In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio z has hyperbolic volume




      D
      (
      z
      )
      =
      Im


      Li

      2



      (
      z
      )
      +
      arg

      (
      1

      z
      )
      log


      |

      z

      |

      .


      {\displaystyle D(z)=\operatorname {Im} \operatorname {Li} _{2}(z)+\arg(1-z)\log |z|.}


      The function D(z) is sometimes called the Bloch-Wigner function. Lobachevsky's function and Clausen's function are closely related functions.
      William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century. He was at school with John Galt, who later wrote a biographical essay on Spence.


      Analytic structure


      Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at



      z
      =
      1


      {\displaystyle z=1}

      , where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis



      (
      1
      ,

      )


      {\displaystyle (1,\infty )}

      . However, the function is continuous at the branch point and takes on the value




      Li

      2



      (
      1
      )
      =

      π

      2



      /

      6


      {\displaystyle \operatorname {Li} _{2}(1)=\pi ^{2}/6}

      .


      Identities







      Li

      2



      (
      z
      )
      +

      Li

      2



      (

      z
      )
      =


      1
      2



      Li

      2



      (

      z

      2


      )
      .


      {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\frac {1}{2}}\operatorname {Li} _{2}(z^{2}).}






      Li

      2



      (
      1

      z
      )
      +

      Li

      2




      (

      1



      1
      z



      )

      =




      (
      ln

      z

      )

      2



      2


      .


      {\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {(\ln z)^{2}}{2}}.}






      Li

      2



      (
      z
      )
      +

      Li

      2



      (
      1

      z
      )
      =




      π


      2


      6



      ln

      z

      ln

      (
      1

      z
      )
      .


      {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\frac {{\pi }^{2}}{6}}-\ln z\cdot \ln(1-z).}

      The reflection formula.





      Li

      2



      (

      z
      )


      Li

      2



      (
      1

      z
      )
      +


      1
      2



      Li

      2



      (
      1


      z

      2


      )
      =





      π


      2


      12



      ln

      z

      ln

      (
      z
      +
      1
      )
      .


      {\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\frac {1}{2}}\operatorname {Li} _{2}(1-z^{2})=-{\frac {{\pi }^{2}}{12}}-\ln z\cdot \ln(z+1).}






      Li

      2



      (
      z
      )
      +

      Li

      2




      (


      1
      z


      )

      =




      π

      2


      6






      (
      ln

      (

      z
      )

      )

      2



      2


      .


      {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}\left({\frac {1}{z}}\right)=-{\frac {\pi ^{2}}{6}}-{\frac {(\ln(-z))^{2}}{2}}.}





      L

      (
      x
      )
      +
      L

      (
      y
      )
      =
      L

      (
      x
      y
      )
      +
      L

      (



      x
      (
      1

      y
      )


      1

      x
      y



      )
      +
      L

      (



      y
      (
      1

      x
      )


      1

      x
      y



      )


      {\displaystyle \operatorname {L} (x)+\operatorname {L} (y)=\operatorname {L} (xy)+\operatorname {L} ({\frac {x(1-y)}{1-xy}})+\operatorname {L} ({\frac {y(1-x)}{1-xy}})}

      . Abel's functional equation or five-term relation where



      L

      (
      z
      )
      =


      π
      6


      [

      Li

      2



      (
      z
      )
      +


      1
      2


      ln

      (
      z
      )
      ln

      (
      1

      z
      )
      ]


      {\displaystyle \operatorname {L} (z)={\frac {\pi }{6}}[\operatorname {Li} _{2}(z)+{\frac {1}{2}}\ln(z)\ln(1-z)]}

      is the Rogers L-function (an analogous relation is satisfied also by the quantum dilogarithm)


      Particular value identities







      Li

      2




      (


      1
      3


      )




      1
      6



      Li

      2




      (


      1
      9


      )

      =




      π


      2


      18






      (
      ln

      3

      )

      2



      6


      .


      {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-{\frac {(\ln 3)^{2}}{6}}.}






      Li

      2




      (




      1
      3



      )




      1
      3



      Li

      2




      (


      1
      9


      )

      =





      π


      2


      18


      +



      (
      ln

      3

      )

      2



      6


      .


      {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {(\ln 3)^{2}}{6}}.}






      Li

      2




      (




      1
      2



      )

      +


      1
      6



      Li

      2




      (


      1
      9


      )

      =





      π


      2


      18


      +
      ln

      2

      ln

      3




      (
      ln

      2

      )

      2



      2






      (
      ln

      3

      )

      2



      3


      .


      {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+\ln 2\cdot \ln 3-{\frac {(\ln 2)^{2}}{2}}-{\frac {(\ln 3)^{2}}{3}}.}






      Li

      2




      (


      1
      4


      )

      +


      1
      3



      Li

      2




      (


      1
      9


      )

      =




      π


      2


      18


      +
      2
      ln

      2

      ln

      3

      2
      (
      ln

      2

      )

      2





      2
      3


      (
      ln

      3

      )

      2


      .


      {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\cdot \ln 3-2(\ln 2)^{2}-{\frac {2}{3}}(\ln 3)^{2}.}







      Li

      2




      (




      1
      8



      )

      +

      Li

      2




      (


      1
      9


      )

      =



      1
      2




      (

      ln



      9
      8



      )


      2


      .


      {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\left(\ln {\frac {9}{8}}\right)^{2}.}





      36

      Li

      2




      (


      1
      2


      )


      36

      Li

      2




      (


      1
      4


      )


      12

      Li

      2




      (


      1
      8


      )

      +
      6

      Li

      2




      (


      1
      64


      )

      =


      π


      2


      .


      {\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}.}



      Special values







      Li

      2



      (

      1
      )
      =





      π


      2


      12


      .


      {\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}.}






      Li

      2



      (
      0
      )
      =
      0.


      {\displaystyle \operatorname {Li} _{2}(0)=0.}

      Its slope = 1.





      Li

      2




      (


      1
      2


      )

      =




      π


      2


      12






      (
      ln

      2

      )

      2



      2


      .


      {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {(\ln 2)^{2}}{2}}.}






      Li

      2



      (
      1
      )
      =
      ζ
      (
      2
      )
      =




      π


      2


      6


      ,


      {\displaystyle \operatorname {Li} _{2}(1)=\zeta (2)={\frac {{\pi }^{2}}{6}},}

      where



      ζ
      (
      s
      )


      {\displaystyle \zeta (s)}

      is the Riemann zeta function.





      Li

      2



      (
      2
      )
      =




      π


      2


      4



      i
      π
      ln

      2.


      {\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}-i\pi \ln 2.}










      Li

      2




      (







      5



      1

      2



      )




      =





      π


      2


      15


      +


      1
      2




      (

      ln






      5


      +
      1

      2



      )


      2








      =





      π


      2


      15


      +


      1
      2



      arcsch

      2



      2.






      {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)&=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\left(\ln {\frac {{\sqrt {5}}+1}{2}}\right)^{2}\\&=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2.\end{aligned}}}










      Li

      2




      (







      5


      +
      1

      2



      )




      =





      π


      2


      10




      ln

      2








      5


      +
      1

      2








      =





      π


      2


      10




      arcsch

      2



      2.






      {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)&=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&=-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}










      Li

      2




      (



      3



      5



      2


      )




      =




      π


      2


      15




      ln

      2








      5


      +
      1

      2








      =




      π


      2


      15




      arcsch

      2



      2.






      {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left({\frac {3-{\sqrt {5}}}{2}}\right)&={\frac {{\pi }^{2}}{15}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&={\frac {{\pi }^{2}}{15}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}










      Li

      2




      (





      5



      1

      2


      )




      =




      π


      2


      10




      ln

      2








      5


      +
      1

      2








      =




      π


      2


      10




      arcsch

      2



      2.






      {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left({\frac {{\sqrt {5}}-1}{2}}\right)&={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}



      In particle physics


      Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:





      Φ


      (
      x
      )
      =




      0


      x





      ln


      |

      1

      u

      |


      u



      d
      u
      =


      {




      Li

      2



      (
      x
      )
      ,


      x

      1
      ;







      π

      2


      3





      1
      2


      (
      ln

      x

      )

      2




      Li

      2



      (


      1
      x


      )
      ,


      x
      >
      1.








      {\displaystyle \operatorname {\Phi } (x)=-\int _{0}^{x}{\frac {\ln |1-u|}{u}}\,du={\begin{cases}\operatorname {Li} _{2}(x),&x\leq 1;\\{\frac {\pi ^{2}}{3}}-{\frac {1}{2}}(\ln x)^{2}-\operatorname {Li} _{2}({\frac {1}{x}}),&x>1.\end{cases}}}



      See also


      Markstein number


      Notes




      References


      Lewin, L. (1958). Dilogarithms and associated functions. Foreword by J. C. P. Miller. London: Macdonald. MR 0105524.
      Morris, Robert (1979). "The dilogarithm function of a real argument". Math. Comp. 33 (146): 778–787. doi:10.1090/S0025-5718-1979-0521291-X. MR 0521291.
      Loxton, J. H. (1984). "Special values of the dilogarithm". Acta Arith. 18 (2): 155–166. doi:10.4064/aa-43-2-155-166. MR 0736728.
      Kirillov, Anatol N. (1995). "Dilogarithm identities". Progress of Theoretical Physics Supplement. 118: 61–142. arXiv:hep-th/9408113. Bibcode:1995PThPS.118...61K. doi:10.1143/PTPS.118.61. S2CID 119177149.
      Osacar, Carlos; Palacian, Jesus; Palacios, Manuel (1995). "Numerical evaluation of the dilogarithm of complex argument". Celest. Mech. Dyn. Astron. 62 (1): 93–98. Bibcode:1995CeMDA..62...93O. doi:10.1007/BF00692071. S2CID 121304484.
      Zagier, Don (2007). "The Dilogarithm Function". In Pierre Cartier; Pierre Moussa; Bernard Julia; Pierre Vanhove (eds.). Frontiers in Number Theory, Physics, and Geometry II (PDF). pp. 3–65. doi:10.1007/978-3-540-30308-4_1. ISBN 978-3-540-30308-4.


      Further reading


      Bloch, Spencer J. (2000). Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series. Vol. 11. Providence, RI: American Mathematical Society. ISBN 0-8218-2114-8. Zbl 0958.19001.


      External links


      NIST Digital Library of Mathematical Functions: Dilogarithm
      Weisstein, Eric W. "Dilogarithm". MathWorld.

    Kata Kunci Pencarian: dilogarithm

    dilogarithmlogarithmlogarithmiclogarithm ruleslogarithm calculatorlogarithmic functionlogarithmic scalelogarithmic graphlogarithmslogarithm formula Search Results

    dilogarithm

    Daftar Isi

    Dilogarithm - Wikipedia

    In mathematics, the dilogarithm (or Spence's function), denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself: and its reflection.

    Dilogarithm -- from Wolfram MathWorld

    The dilogarithm can be defined by the sum Li_2(z)=sum_(k=1)^infty(z^k)/(k^2) ... The dilogarithm Li_2(z) is a special case of the polylogarithm Li_n(z) for n=2. Note that the notation Li_2(x) is unfortunately similar to that for the logarithmic integral Li(x).

    Polylogarithm - Wikipedia

    In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a …

    The Dilogarithm Function - Max Planck Society

    the dilogarithm function and describe some of its more striking properties: its known special values which can be expressed in terms of ordinary log-arithms, its many functional equations, its connection with the volumes of ideal tetrahedra in hyperbolic …

    DILOG. The dilogarithm function - Lancaster University

    DILOG. The dilogarithm function Notes by G. J. O. Jameson The \dilogarithm" function Li 2 is de ned for jxj 1 by Li 2(x) = X1 n=1 xn n 2 = x+ x2 2 + x3 32 + : (1) It has been called \Spence’s function", in tribute to the pioneering study by W. Spence in 1809. This is actually the case k = 2 of the \polylogarithm" Li k(x) = P 1 n=1 x n=nk. In ...

    1. The dilogarithm - Yale University

    At rst glance many features of this picture seem special for the dilogarithm. For example the classical n-logarithms are functions of just 1 variable, but for n>2 GL ndoes not act on P1, @Hnis no longer a complex manifold and so on. In this lecture I will explain how most of these facts about the dilogarithm are

    The Dilogarithm Function - Durham

    the dilogarithm function and describe some of its more striking properties: its known special values which can be expressed in terms of ordinary log-arithms, its many functional equations, its connection with the volumes of ideal tetrahedra in hyperbolic …

    special functions - Short calculation of the dilogarithm?

    Is there a nice way to implement the dilogarithm function for real values, without actually performing the integration? A series solution would have been nice, but the series around 0 0 has a convergence radius of 1 1, so it doesn't work for larger x x. Ideally, I'm looking for an "elegant" method, rather than the "fastest" method.

    The Mysterious Dilogarithm - Yale University

    for 0 < x < 1 : Li2( x ) is called the dilogarithm function. Dilogarithm Introduction De nition. De nition. The aylorT series of the logarithm around 1 is given by log(1 x ) = X1 n =1. xn. n for 0 < x < 1 ; By analogy, we have: De nition (Leibnitz 1696; Euler 1768) The polylogarithm is de ned by the power series Lim( x ) = X1 n =1. xn. nm.

    dilogarithm function - PlanetMath.org

    Feb 9, 2018 · In terms of the Bernoulli numbers, the dilogarithm function has a series expansion more rapidly converging than (1): Li 2 ( x ) = ∑ n = 1 ∞ B n - 1 ( - ln ⁡ ( 1 - x ) ) n n ! ( | ln ( 1 - x ) | < 2 π )