Hahn polynomials GudangMovies21 Rebahinxxi LK21

    In mathematics, the Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials, introduced by Pafnuty Chebyshev in 1875 (Chebyshev 1907) and rediscovered by Wolfgang Hahn (Hahn 1949). The Hahn class is a name for special cases of Hahn polynomials, including Hahn polynomials, Meixner polynomials, Krawtchouk polynomials, and Charlier polynomials. Sometimes the Hahn class is taken to include limiting cases of these polynomials, in which case it also includes the classical orthogonal polynomials.
    Hahn polynomials are defined in terms of generalized hypergeometric functions by





    Q

    n


    (
    x
    ;
    α
    ,
    β
    ,
    N
    )
    =





    3



    F

    2


    (

    n
    ,

    x
    ,
    n
    +
    α
    +
    β
    +
    1
    ;
    α
    +
    1
    ,

    N
    +
    1
    ;
    1
    )
    .



    {\displaystyle Q_{n}(x;\alpha ,\beta ,N)={}_{3}F_{2}(-n,-x,n+\alpha +\beta +1;\alpha +1,-N+1;1).\ }


    Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
    If



    α
    =
    β
    =
    0


    {\displaystyle \alpha =\beta =0}

    , these polynomials are identical to the discrete Chebyshev polynomials except for a scale factor.
    Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the continuous Hahn polynomials pn(x,a,b, a, b), and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.


    Orthogonality









    x
    =
    0


    N

    1



    Q

    n


    (
    x
    )

    Q

    m


    (
    x
    )
    ρ
    (
    x
    )
    =


    1

    π

    n





    δ

    m
    ,
    n


    ,


    {\displaystyle \sum _{x=0}^{N-1}Q_{n}(x)Q_{m}(x)\rho (x)={\frac {1}{\pi _{n}}}\delta _{m,n},}








    n
    =
    0


    N

    1



    Q

    n


    (
    x
    )

    Q

    n


    (
    y
    )

    π

    n


    =


    1

    ρ
    (
    x
    )




    δ

    x
    ,
    y




    {\displaystyle \sum _{n=0}^{N-1}Q_{n}(x)Q_{n}(y)\pi _{n}={\frac {1}{\rho (x)}}\delta _{x,y}}


    where δx,y is the Kronecker delta function and the weight functions are




    ρ
    (
    x
    )
    =
    ρ
    (
    x
    ;
    α
    ;
    β
    ,
    N
    )
    =



    (



    α
    +
    x

    x


    )






    (



    β
    +
    N

    1

    x


    N

    1

    x



    )




    /




    (



    N
    +
    α
    +
    β


    N

    1



    )





    {\displaystyle \rho (x)=\rho (x;\alpha ;\beta ,N)={\binom {\alpha +x}{x}}{\binom {\beta +N-1-x}{N-1-x}}/{\binom {N+\alpha +\beta }{N-1}}}


    and





    π

    n


    =

    π

    n


    (
    α
    ,
    β
    ,
    N
    )
    =



    (



    N

    1

    n


    )






    2
    n
    +
    α
    +
    β
    +
    1


    α
    +
    β
    +
    1






    Γ
    (
    β
    +
    1
    ,
    n
    +
    α
    +
    1
    ,
    n
    +
    α
    +
    β
    +
    1
    )


    Γ
    (
    α
    +
    1
    ,
    α
    +
    β
    +
    1
    ,
    n
    +
    β
    +
    1
    ,
    n
    +
    1
    )




    /




    (



    N
    +
    α
    +
    β
    +
    n

    n


    )





    {\displaystyle \pi _{n}=\pi _{n}(\alpha ,\beta ,N)={\binom {N-1}{n}}{\frac {2n+\alpha +\beta +1}{\alpha +\beta +1}}{\frac {\Gamma (\beta +1,n+\alpha +1,n+\alpha +\beta +1)}{\Gamma (\alpha +1,\alpha +\beta +1,n+\beta +1,n+1)}}/{\binom {N+\alpha +\beta +n}{n}}}

    .


    Relation to other polynomials


    Racah polynomials are a generalization of Hahn polynomials


    References


    Chebyshev, P. (1907), "Sur l'interpolation des valeurs équidistantes", in Markoff, A.; Sonin, N. (eds.), Oeuvres de P. L. Tchebychef, vol. 2, pp. 219–242, Reprinted by Chelsea
    Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.

Kata Kunci Pencarian:

hahn polynomialsdual hahn polynomialscontinuous-hahn polynomials
Hahn multiple orthogonal polynomials of type I: Hypergeometrical ...

Hahn multiple orthogonal polynomials of type I: Hypergeometrical ...

Multivariate Hahn polynomials, a Birth and Death approach | Papers With ...

Multivariate Hahn polynomials, a Birth and Death approach | Papers With ...

(PDF) Hahn multiple orthogonal polynomials of type I: Hypergeometrical ...

(PDF) Hahn multiple orthogonal polynomials of type I: Hypergeometrical ...

(PDF) Asymptotic relations between the Hahn-type polynomials and ...

(PDF) Asymptotic relations between the Hahn-type polynomials and ...

(PDF) Performance enhancement of high order Hahn polynomials using ...

(PDF) Performance enhancement of high order Hahn polynomials using ...

Plot of weighted dual Hahn polynomials of the five first orders with ...

Plot of weighted dual Hahn polynomials of the five first orders with ...

Hahn recognized for efforts in establishing COVID-19 testing lab: 2021 ...

Hahn recognized for efforts in establishing COVID-19 testing lab: 2021 ...

(PDF) ON HAHN POLYNOMIALS AND CONTINUOUS DUAL HAHN POLYNOMIALS

(PDF) ON HAHN POLYNOMIALS AND CONTINUOUS DUAL HAHN POLYNOMIALS

(PDF) Doubling Hahn polynomials: classification and applications

(PDF) Doubling Hahn polynomials: classification and applications

Matrix of Hahn Polynomials values (a = b = 20) using GSOP algorithm for ...

Matrix of Hahn Polynomials values (a = b = 20) using GSOP algorithm for ...

Figure 3 from GLOBAL ASYMPTOTICS OF THE HAHN POLYNOMIALS | Semantic Scholar

Figure 3 from GLOBAL ASYMPTOTICS OF THE HAHN POLYNOMIALS | Semantic Scholar

(PDF) Fourier Transform of the Orthogonal Polynomials on the Unit Ball ...

(PDF) Fourier Transform of the Orthogonal Polynomials on the Unit Ball ...