List of Intel CPU microarchitectures GudangMovies21 Rebahinxxi LK21

    The following is a partial list of Intel CPU microarchitectures. The list is incomplete, additional details can be found in Intel's tick–tock model, process–architecture–optimization model and Template:Intel processor roadmap.


    x86 microarchitectures




    = 16-bit

    =
    8086
    first x86 processor; initially a temporary substitute for the iAPX 432 to compete with Motorola, Zilog, and National Semiconductor and to top the successful Z80. The 8088 version, with an 8-bit bus, was used in the original IBM Personal Computer.
    186
    included a DMA controller, interrupt controller, timers, and chip select logic. A small number of additional instructions. The 80188 was a version with an 8-bit bus.
    286
    first x86 processor with protected mode including segmentation based virtual memory management. Performance improved by a factor of 3 to 4 over 8086. Included instructions relating to protected mode. The 80286 had a 24-bit address bus.


    = 32-bit (IA-32)

    =
    i386
    first 32-bit x86 processor. Introduced paging on top of segmentation which is the most commonly used memory protection technology in modern operating systems ever since. Many additional powerful and valuable new instructions.
    i486
    Intel's second generation of 32-bit x86 processors, introduced built-in floating point unit (FPU), 8 KB on-chip L1 cache, and pipelining. Faster per MHz than the 386. Small number of new instructions.
    P5
    original Pentium microprocessors, first x86 processor with super-scalar architecture and branch prediction.
    P6
    used in Pentium Pro, Pentium II, Pentium II Xeon, Pentium III, and Pentium III Xeon microprocessors. First x86 processor to support SIMD instruction with XMM register implemented, RISC μop decode scheme, integrated register renaming and out-of-order execution. Some important new instructions, including conditional moves, which allow the avoidance of costly branch instructions. Added 36-bit physical memory addressing, "Physical Address Extension (PAE)".
    Pentium M: updated version of Pentium III's P6 microarchitecture designed from the ground up for mobile computing and first x86 to support micro-op fusion and smart cache.
    Enhanced Pentium M: updated, dual core version of the Pentium M microarchitecture used in the first Intel Core microprocessors, first x86 to have shadow register architecture and speed step technology.
    NetBurst
    commonly referred to as P7 although its internal name was P68 (P7 was used for Itanium). Used in Pentium 4, Pentium D, and some Xeon microprocessors. Very long pipeline. The Prescott was a major architectural revision. Later revisions were the first to feature Intel's x86-64 architecture, enhanced branch prediction and trace cache, and eventually support was added for the NX (No eXecute) bit to implement executable-space protection.


    = 64-bit (x86-64)

    =
    Core
    reengineered P6-based microarchitecture used in Intel Core 2 and Xeon microprocessors, built on a 65 nm process, supporting x86-64 level SSE instruction and macro-op fusion and enhanced micro-op fusion with a wider front end and decoder, larger out-of-order core and renamed register, support loop stream detector and large shadow register file.
    Penryn: 45 nm shrink of the Core microarchitecture with larger cache, higher FSB and clock speeds, SSE4.1 instructions, support for XOP and F/SAVE and F/STORE instructions, enhanced register alias table and larger integer register file.
    Nehalem
    released November 17, 2008, built on a 45 nm process and used in the Core i7, Core i5, Core i3 microprocessors. Incorporates the memory controller into the CPU die. Added important powerful new instructions, SSE4.2.
    Westmere: 32 nm shrink of the Nehalem microarchitecture with several new features.
    Sandy Bridge
    32 nm microarchitecture, released January 9, 2011. Formerly called Gesher but renamed in 2007. First x86 to introduce 256 bit AVX instruction set and implementation of YMM registers.
    Ivy Bridge: successor to Sandy Bridge, using 22 nm process, released in April 2012.
    Haswell
    22 nm microarchitecture, released June 3, 2013. Added a number of new instructions, including AVX2 and FMA.
    Broadwell: 14 nm derivative of the Haswell microarchitecture, released in September 2014. Three-cycle FMUL latency, 64 entry scheduler. Formerly called Rockwell.
    Skylake
    14 nm microarchitecture, released August 5, 2015.
    Kaby Lake: successor to Skylake, released in August 2016, broke Intel's tick-tock schedule due to delays with the 10 nm process.
    Amber Lake: ultra low power, mobile-only successor to Kaby Lake, using 14+ nm process, released in August 2018 (no architecture changes)
    Whiskey Lake: mobile-only successor to Kaby Lake Refresh, using 14++ nm process, released in August 2018 (has hardware mitigations for some vulnerabilities)
    Skylake-X: high-end desktop, workstation and server microarchitecture, released on June 19, 2017 (HEDT), July 11, 2017 (SP) and August 29, 2017 (W). Introduces support for AVX-512 instruction set.
    Coffee Lake: successor to Kaby Lake, using 14++ nm process, released in October 2017
    Cascade Lake: server and high-end desktop successor to Kaby Lake-X and Skylake-X, using 14++ nm process, released in April 2019
    Comet Lake: successor to Coffee Lake, using 14++ nm process, released in August 2019
    Cooper Lake: server-only, optimized for AI oriented workloads using bfloat16, with limited availability only to Intel priority partners, using 14++ nm process, released in 2020
    Palm Cove
    Originally meant to be successor to Skylake, but cancelled after releasing just one chip. Includes the AVX-512 instruction set.
    Cannon Lake: mobile-only successor of Kaby Lake, using Intel's 10 nm process, first and only microarchitecture to implement the Palm Cove core, released in May 2018. Formerly called Skymont, discontinued in December 2019.
    Starting with Cannon Lake, Intel has changed their microarchitecture naming scheme, decoupling core codenames from CPU codenames.
    Sunny Cove
    Successor to the Palm Cove core, first non-Atom core to include hardware acceleration for SHA hashing algorithms.
    Ice Lake: low power, mobile-only successor to Whiskey Lake, using 10 nm process, released in September 2019
    Lakefield: mobile-only, Intel's first hybrid processor, released in June 2020. Sunny Cove is used in the singular performance core (P-core) of Lakefield processors. AVX and more advanced instruction sets are disabled due to the E-core not supporting them.
    Ice Lake-SP: server-only successor to Cascade Lake, using 10 nm process, released in April 2021
    Cypress Cove
    Backport of Sunny Cove to Intel's 14 nm process
    Rocket Lake: Successor to Comet Lake, using Intel's 14++ nm process, released on March 30, 2021
    Willow Cove
    Successor to the Sunny Cove core, includes new security features and redesigns the cache subsystem.
    Tiger Lake: successor to Ice Lake, using Intel's 10 nm SuperFin (10SF) process, released in Q4 2020
    Golden Cove
    Successor to the Willow Cove core, includes improvements to performance and power efficiency. Also includes new instructions.
    Alder Lake: hybrid processor, succeeds Rocket Lake and Tiger Lake; uses Intel 7 process (previously known as 10ESF), released on November 4, 2021. Golden Cove is used in P-cores of Alder Lake processors.
    Sapphire Rapids: server and workstation-only, successor to Ice Lake-SP, manufactured on Intel 7 process, released on January 10, 2023. Introduces AMX.
    Raptor Cove
    A refresh of Golden Cove with increased L2 and L3 caches and core clocks.
    Raptor Lake: successor to Alder Lake with increased cache sizes, core clocks and the number of E-cores, released on October 20, 2022. Manufactured using Intel 7 process. Raptor Cove is used in the P-cores while the E-cores are still implemented using Gracemont microarchitecture.
    Emerald Rapids: successor to Sapphire Rapids, server- and workstation-only. Fifth-generation Xeon Scalable server processors based on the Intel 7 node.


    = x86 ULV (Atom)

    =
    Bonnell
    45 nm, low-power, in-order microarchitecture for use in Atom processors.
    Saltwell: 32 nm shrink of the Bonnell microarchitecture.
    Silvermont
    22 nm, out-of-order microarchitecture for use in Atom processors, released on May 6, 2013.
    Airmont: 14 nm shrink of the Silvermont microarchitecture.
    Goldmont
    14 nm Atom microarchitecture iteration after Silvermont but borrows heavily from Skylake processors (e.g., GPU), released in April 2016.
    Goldmont Plus: successor to Goldmont microarchitecture, still based on the 14 nm process, released on December 11, 2017.
    Tremont
    10 nm Atom microarchitecture iteration after Goldmont Plus.
    Lakefield: mobile-only, Intel's first hybrid processor, released in June 2020. Tremont is used in efficiency cores (E-cores) of Lakefield processors.
    Jasper Lake: Celeron and Pentium Silver desktop and mobile processors, released in Q1 2021.
    Elkhart Lake: embedded processors targeted at IoT, released in Q1 2021.
    Gracemont
    Intel 7 process Atom microarchitecture iteration after Tremont. First Atom class core with AVX and AVX2 support.
    Alder Lake: hybrid processor, succeeds Rocket Lake and Tiger Lake, released on November 4, 2021. Gracemont is used in E-cores of Alder Lake processors.
    Raptor Lake: a refresh of Alder Lake, released on October 20, 2022.


    = x86 MIC (Many Integrated Core)

    =
    Larrabee (cancelled 2010)
    multi-core in-order x86-64 updated version of P5 microarchitecture, with wide SIMD vector units and texture sampling hardware for use in graphics.
    Xeon Phi


    Other microarchitectures




    = IA-64 (Itanium)

    =
    Merced
    original Itanium microarchitecture. Used only in the first Itanium microprocessors.
    McKinley
    enhanced microarchitecture used in the first two generations of the Itanium 2 microprocessor. Madison is the 130 nm version.
    Montecito
    enhanced McKinley microarchitecture used in the Itanium 2 9000- and 9100-series of processors. Added dual core, coarse multithreading, and other improvements. The Montvale update added demand-based switching (SpeedStep) and core-level lockstep execution.
    Tukwila
    enhanced microarchitecture used in the Itanium 9300 series of processors. Added quad core, an integrated memory controller, QuickPath Interconnect, and other improvements e.g. a more active SoEMT.
    Poulson
    Itanium processor featuring an all-new microarchitecture. 8 cores, decoupling in pipeline and in multithreading. 12-wide issue with partial out-of-order execution.
    Kittson
    the last Itanium. It has the same microarchitecture as Poulson, but slightly higher clock speed for the top two models.


    = Miscellaneous

    =

    4004/4040
    8008
    8080/8085
    iAPX 432
    80960
    80860
    XScale
    a microarchitecture implementing the ARM architecture instruction set.


    Roadmap




    = Pentium 4 / Core lines

    =


    = Atom lines

    =


    See also


    List of Intel processors - Consumer Computer or non-consumer workstation
    List of AMD CPU microarchitectures
    Marvell Technology Group XScale microarchitecture
    Transient execution CPU vulnerability


    Notes




    References




    External links


    Intel Automated Relational Knowledgebase

Kata Kunci Pencarian:

list of intel cpu microarchitectures
List of Intel Microprocessors | PDF | Microcontroller | X86 Architecture

List of Intel Microprocessors | PDF | Microcontroller | X86 Architecture

List of Intel Core I5 Microprocessors | PDF | Integrated Circuit | X86 ...

List of Intel Core I5 Microprocessors | PDF | Integrated Circuit | X86 ...

List of Intel Microprocessors: Participate in The World

List of Intel Microprocessors: Participate in The World's Largest Photo ...

Intel Microprocessors Architecture Progr | PDF | Central Processing ...

Intel Microprocessors Architecture Progr | PDF | Central Processing ...

Intel Cpu List By Performance

Intel Cpu List By Performance

Intel Cpu List By Performance

Intel Cpu List By Performance

Cpu Intel Meteor Lake | Hot Sex Picture

Cpu Intel Meteor Lake | Hot Sex Picture

Intel 8th generation and 9th generation CPU list leaked, includes Core ...

Intel 8th generation and 9th generation CPU list leaked, includes Core ...

Intel CPU Microarchitectures

Intel CPU Microarchitectures

Intel Cpu Architecture Block Diagram

Intel Cpu Architecture Block Diagram

Intel’s next-gen CPU architecture will be “significantly bigger” than ...

Intel’s next-gen CPU architecture will be “significantly bigger” than ...

Types Of CPU Introduction, Components, Features And Types, 49% OFF

Types Of CPU Introduction, Components, Features And Types, 49% OFF