Artikel: N = 2 superconformal algebra GudangMovies21 Rebahinxxi

  • Source: N = 2 superconformal algebra
  • In mathematical physics, the 2D N = 2 superconformal algebra is an infinite-dimensional Lie superalgebra, related to supersymmetry, that occurs in string theory and two-dimensional conformal field theory. It has important applications in mirror symmetry. It was introduced by M. Ademollo, L. Brink, and A. D'Adda et al. (1976) as a gauge algebra of the U(1) fermionic string.


    Definition


    There are two slightly different ways to describe the N = 2 superconformal algebra, called the N = 2 Ramond algebra and the N = 2 Neveu–Schwarz algebra, which are isomorphic (see below) but differ in the choice of standard basis.
    The N = 2 superconformal algebra is the Lie superalgebra with basis of even elements c, Ln, Jn, for n an integer, and odd elements G+r, G−r, where



    r



    Z




    {\displaystyle r\in {\mathbb {Z} }}

    (for the Ramond basis) or



    r



    1
    2


    +


    Z




    {\textstyle r\in {1 \over 2}+{\mathbb {Z} }}

    (for the Neveu–Schwarz basis) defined by the following relations:

    c is in the center




    [

    L

    m


    ,

    L

    n


    ]
    =

    (

    m

    n

    )


    L

    m
    +
    n


    +


    c
    12



    (


    m

    3



    m

    )


    δ

    m
    +
    n
    ,
    0




    {\displaystyle [L_{m},L_{n}]=\left(m-n\right)L_{m+n}+{c \over 12}\left(m^{3}-m\right)\delta _{m+n,0}}





    [

    L

    m


    ,


    J

    n


    ]
    =

    n

    J

    m
    +
    n




    {\displaystyle [L_{m},\,J_{n}]=-nJ_{m+n}}





    [

    J

    m


    ,

    J

    n


    ]
    =


    c
    3


    m

    δ

    m
    +
    n
    ,
    0




    {\displaystyle [J_{m},J_{n}]={c \over 3}m\delta _{m+n,0}}





    {

    G

    r


    +


    ,

    G

    s





    }
    =

    L

    r
    +
    s


    +


    1
    2



    (

    r

    s

    )


    J

    r
    +
    s


    +


    c
    6



    (


    r

    2





    1
    4



    )


    δ

    r
    +
    s
    ,
    0




    {\displaystyle \{G_{r}^{+},G_{s}^{-}\}=L_{r+s}+{1 \over 2}\left(r-s\right)J_{r+s}+{c \over 6}\left(r^{2}-{1 \over 4}\right)\delta _{r+s,0}}





    {

    G

    r


    +


    ,

    G

    s


    +


    }
    =
    0
    =
    {

    G

    r





    ,

    G

    s





    }


    {\displaystyle \{G_{r}^{+},G_{s}^{+}\}=0=\{G_{r}^{-},G_{s}^{-}\}}





    [

    L

    m


    ,

    G

    r


    ±


    ]
    =

    (



    m
    2



    r

    )


    G

    r
    +
    m


    ±




    {\displaystyle [L_{m},G_{r}^{\pm }]=\left({m \over 2}-r\right)G_{r+m}^{\pm }}





    [

    J

    m


    ,

    G

    r


    ±


    ]
    =
    ±

    G

    m
    +
    r


    ±




    {\displaystyle [J_{m},G_{r}^{\pm }]=\pm G_{m+r}^{\pm }}


    If



    r
    ,
    s



    Z




    {\displaystyle r,s\in {\mathbb {Z} }}

    in these relations, this yields the
    N = 2 Ramond algebra; while if



    r
    ,
    s



    1
    2


    +


    Z




    {\textstyle r,s\in {1 \over 2}+{\mathbb {Z} }}

    are half-integers, it gives the N = 2 Neveu–Schwarz algebra. The operators




    L

    n




    {\displaystyle L_{n}}

    generate a Lie subalgebra isomorphic to the Virasoro algebra. Together with the operators




    G

    r


    =

    G

    r


    +


    +

    G

    r







    {\displaystyle G_{r}=G_{r}^{+}+G_{r}^{-}}

    , they generate a Lie superalgebra isomorphic to the super Virasoro algebra,
    giving the Ramond algebra if



    r
    ,
    s


    {\displaystyle r,s}

    are integers and the Neveu–Schwarz algebra otherwise. When represented as operators on a complex inner product space,



    c


    {\displaystyle c}

    is taken to act as multiplication by a real scalar, denoted by the same letter and called the central charge, and the adjoint structure is as follows:






    L

    n





    =

    L


    n


    ,



    J

    m





    =

    J


    m


    ,


    (

    G

    r


    ±



    )




    =

    G


    r





    ,



    c




    =
    c



    {\displaystyle {L_{n}^{*}=L_{-n},\,\,J_{m}^{*}=J_{-m},\,\,(G_{r}^{\pm })^{*}=G_{-r}^{\mp },\,\,c^{*}=c}}



    Properties


    The N = 2 Ramond and Neveu–Schwarz algebras are isomorphic by the spectral shift isomorphism



    α


    {\displaystyle \alpha }

    of Schwimmer & Seiberg (1987):



    α
    (

    L

    n


    )
    =

    L

    n


    +


    1
    2



    J

    n


    +


    c
    24



    δ

    n
    ,
    0




    {\displaystyle \alpha (L_{n})=L_{n}+{1 \over 2}J_{n}+{c \over 24}\delta _{n,0}}





    α
    (

    J

    n


    )
    =

    J

    n


    +


    c
    6



    δ

    n
    ,
    0




    {\displaystyle \alpha (J_{n})=J_{n}+{c \over 6}\delta _{n,0}}





    α
    (

    G

    r


    ±


    )
    =

    G

    r
    ±


    1
    2




    ±




    {\displaystyle \alpha (G_{r}^{\pm })=G_{r\pm {1 \over 2}}^{\pm }}

    with inverse:




    α


    1


    (

    L

    n


    )
    =

    L

    n





    1
    2



    J

    n


    +


    c
    24



    δ

    n
    ,
    0




    {\displaystyle \alpha ^{-1}(L_{n})=L_{n}-{1 \over 2}J_{n}+{c \over 24}\delta _{n,0}}






    α


    1


    (

    J

    n


    )
    =

    J

    n





    c
    6



    δ

    n
    ,
    0




    {\displaystyle \alpha ^{-1}(J_{n})=J_{n}-{c \over 6}\delta _{n,0}}






    α


    1


    (

    G

    r


    ±


    )
    =

    G

    r



    1
    2




    ±




    {\displaystyle \alpha ^{-1}(G_{r}^{\pm })=G_{r\mp {1 \over 2}}^{\pm }}


    In the N = 2 Ramond algebra, the zero mode operators




    L

    0




    {\displaystyle L_{0}}

    ,




    J

    0




    {\displaystyle J_{0}}

    ,




    G

    0


    ±




    {\displaystyle G_{0}^{\pm }}

    and the constants form a five-dimensional Lie superalgebra. They satisfy the same relations as the fundamental operators in Kähler geometry, with




    L

    0




    {\displaystyle L_{0}}

    corresponding to the Laplacian,




    J

    0




    {\displaystyle J_{0}}

    the degree operator, and




    G

    0


    ±




    {\displaystyle G_{0}^{\pm }}

    the






    {\displaystyle \partial }

    and






    ¯




    {\displaystyle {\overline {\partial }}}

    operators.
    Even integer powers of the spectral shift give automorphisms of the N = 2 superconformal algebras, called spectral shift automorphisms. Another automorphism



    β


    {\displaystyle \beta }

    , of period two, is given by



    β
    (

    L

    m


    )
    =

    L

    m


    ,


    {\displaystyle \beta (L_{m})=L_{m},}





    β
    (

    J

    m


    )
    =


    J

    m





    c
    3



    δ

    m
    ,
    0


    ,


    {\displaystyle \beta (J_{m})=-J_{m}-{c \over 3}\delta _{m,0},}





    β
    (

    G

    r


    ±


    )
    =

    G

    r







    {\displaystyle \beta (G_{r}^{\pm })=G_{r}^{\mp }}

    In terms of Kähler operators,



    β


    {\displaystyle \beta }

    corresponds to conjugating the complex structure. Since



    β
    α

    β


    1


    =

    α


    1




    {\displaystyle \beta \alpha \beta ^{-1}=\alpha ^{-1}}

    , the automorphisms




    α

    2




    {\displaystyle \alpha ^{2}}

    and



    β


    {\displaystyle \beta }

    generate a group of automorphisms of the N = 2 superconformal algebra isomorphic to the infinite dihedral group





    Z






    Z



    2




    {\displaystyle {\mathbb {Z} }\rtimes {\mathbb {Z} }_{2}}

    .
    Twisted operators






    L



    n


    =

    L

    n


    +


    1
    2


    (
    n
    +
    1
    )

    J

    n




    {\textstyle {\mathcal {L}}_{n}=L_{n}+{1 \over 2}(n+1)J_{n}}

    were introduced by Eguchi & Yang (1990) and satisfy:



    [



    L



    m


    ,



    L



    n


    ]
    =
    (
    m

    n
    )



    L



    m
    +
    n




    {\displaystyle [{\mathcal {L}}_{m},{\mathcal {L}}_{n}]=(m-n){\mathcal {L}}_{m+n}}

    so that these operators satisfy the Virasoro relation with central charge 0. The constant



    c


    {\displaystyle c}

    still appears in the relations for




    J

    m




    {\displaystyle J_{m}}

    and the modified relations



    [



    L



    m


    ,

    J

    n


    ]
    =

    n

    J

    m
    +
    n


    +


    c
    6



    (


    m

    2


    +
    m

    )


    δ

    m
    +
    n
    ,
    0




    {\displaystyle [{\mathcal {L}}_{m},J_{n}]=-nJ_{m+n}+{c \over 6}\left(m^{2}+m\right)\delta _{m+n,0}}





    {

    G

    r


    +


    ,

    G

    s





    }
    =
    2



    L



    r
    +
    s



    2
    s

    J

    r
    +
    s


    +


    c
    3



    (


    m

    2


    +
    m

    )


    δ

    m
    +
    n
    ,
    0




    {\displaystyle \{G_{r}^{+},G_{s}^{-}\}=2{\mathcal {L}}_{r+s}-2sJ_{r+s}+{c \over 3}\left(m^{2}+m\right)\delta _{m+n,0}}



    Constructions




    = Free field construction

    =
    Green, Schwarz, and Witten (1988a, 1988b) give a construction using two commuting real bosonic fields



    (

    a

    n


    )


    {\displaystyle (a_{n})}

    ,



    (

    b

    n


    )


    {\displaystyle (b_{n})}






    [

    a

    m


    ,

    a

    n


    ]
    =


    m
    2



    δ

    m
    +
    n
    ,
    0


    ,




    [

    b

    m


    ,

    b

    n


    ]
    =


    m
    2



    δ

    m
    +
    n
    ,
    0



    ,





    a

    n





    =

    a


    n


    ,





    b

    n





    =

    b


    n




    {\displaystyle {[a_{m},a_{n}]={m \over 2}\delta _{m+n,0},\,\,\,\,[b_{m},b_{n}]={m \over 2}\delta _{m+n,0}},\,\,\,\,a_{n}^{*}=a_{-n},\,\,\,\,b_{n}^{*}=b_{-n}}


    and a complex fermionic field



    (

    e

    r


    )


    {\displaystyle (e_{r})}





    {

    e

    r


    ,

    e

    s





    }
    =

    δ

    r
    ,
    s


    ,




    {

    e

    r


    ,

    e

    s


    }
    =
    0.


    {\displaystyle \{e_{r},e_{s}^{*}\}=\delta _{r,s},\,\,\,\,\{e_{r},e_{s}\}=0.}






    L

    n




    {\displaystyle L_{n}}

    is defined to the sum of the Virasoro operators naturally associated with each of the three systems





    L

    n


    =



    m


    :

    a


    m
    +
    n



    a

    m


    :
    +



    m


    :

    b


    m
    +
    n



    b

    m


    :
    +



    r



    (

    r
    +


    n
    2



    )

    :

    e

    r






    e

    n
    +
    r


    :


    {\displaystyle L_{n}=\sum _{m}:a_{-m+n}a_{m}:+\sum _{m}:b_{-m+n}b_{m}:+\sum _{r}\left(r+{n \over 2}\right):e_{r}^{*}e_{n+r}:}


    where normal ordering has been used for bosons and fermions.
    The current operator




    J

    n




    {\displaystyle J_{n}}

    is defined by the standard construction from fermions





    J

    n


    =



    r


    :

    e

    r






    e

    n
    +
    r


    :


    {\displaystyle J_{n}=\sum _{r}:e_{r}^{*}e_{n+r}:}


    and the two supersymmetric operators




    G

    r


    ±




    {\displaystyle G_{r}^{\pm }}

    by





    G

    r


    +


    =

    (

    a


    m


    +
    i

    b


    m


    )


    e

    r
    +
    m


    ,





    G

    r





    =

    (

    a

    r
    +
    m



    i

    b

    r
    +
    m


    )


    e

    m







    {\displaystyle G_{r}^{+}=\sum (a_{-m}+ib_{-m})\cdot e_{r+m},\,\,\,\,G_{r}^{-}=\sum (a_{r+m}-ib_{r+m})\cdot e_{m}^{*}}


    This yields an N = 2 Neveu–Schwarz algebra with c = 3.


    = SU(2) supersymmetric coset construction

    =
    Di Vecchia et al. (1986) gave a coset construction of the N = 2 superconformal algebras, generalizing the coset constructions of Goddard, Kent & Olive (1986) for the discrete series representations of the Virasoro and super Virasoro algebra. Given a representation of the affine Kac–Moody algebra of SU(2) at level






    {\displaystyle \ell }

    with basis




    E

    n


    ,

    F

    n


    ,

    H

    n




    {\displaystyle E_{n},F_{n},H_{n}}

    satisfying




    [

    H

    m


    ,

    H

    n


    ]
    =
    2
    m


    δ

    n
    +
    m
    ,
    0


    ,


    {\displaystyle [H_{m},H_{n}]=2m\ell \delta _{n+m,0},}





    [

    E

    m


    ,

    F

    n


    ]
    =

    H

    m
    +
    n


    +
    m


    δ

    m
    +
    n
    ,
    0


    ,


    {\displaystyle [E_{m},F_{n}]=H_{m+n}+m\ell \delta _{m+n,0},}





    [

    H

    m


    ,

    E

    n


    ]
    =
    2

    E

    m
    +
    n


    ,


    {\displaystyle [H_{m},E_{n}]=2E_{m+n},}





    [

    H

    m


    ,

    F

    n


    ]
    =

    2

    F

    m
    +
    n


    ,


    {\displaystyle [H_{m},F_{n}]=-2F_{m+n},}


    the supersymmetric generators are defined by





    G

    r


    +


    =
    (


    /

    2
    +
    1

    )


    1

    /

    2




    E


    m




    e

    m
    +
    r


    ,




    G

    r





    =
    (


    /

    2
    +
    1

    )


    1

    /

    2




    F

    r
    +
    m




    e

    m





    .


    {\displaystyle G_{r}^{+}=(\ell /2+1)^{-1/2}\sum E_{-m}\cdot e_{m+r},\,\,\,G_{r}^{-}=(\ell /2+1)^{-1/2}\sum F_{r+m}\cdot e_{m}^{*}.}


    This yields the N=2 superconformal algebra with




    c
    =
    3


    /

    (

    +
    2
    )
    .


    {\displaystyle c=3\ell /(\ell +2).}


    The algebra commutes with the bosonic operators





    X

    n


    =

    H

    n



    2



    r


    :

    e

    r






    e

    n
    +
    r


    :
    .


    {\displaystyle X_{n}=H_{n}-2\sum _{r}:e_{r}^{*}e_{n+r}:.}


    The space of physical states consists of eigenvectors of




    X

    0




    {\displaystyle X_{0}}

    simultaneously annihilated by the




    X

    n




    {\displaystyle X_{n}}

    's for positive



    n


    {\displaystyle n}

    and the supercharge operator




    Q
    =

    G

    1

    /

    2


    +


    +

    G


    1

    /

    2







    {\displaystyle Q=G_{1/2}^{+}+G_{-1/2}^{-}}

    (Neveu–Schwarz)




    Q
    =

    G

    0


    +


    +

    G

    0





    .


    {\displaystyle Q=G_{0}^{+}+G_{0}^{-}.}

    (Ramond)
    The supercharge operator commutes with the action of the affine Weyl group and the physical states lie in a single orbit of this group, a fact which implies the Weyl-Kac character formula.


    = Kazama–Suzuki supersymmetric coset construction

    =
    Kazama & Suzuki (1989) generalized the SU(2) coset construction to any pair consisting of a simple compact Lie group



    G


    {\displaystyle G}

    and a closed subgroup



    H


    {\displaystyle H}

    of maximal rank, i.e. containing a maximal torus



    T


    {\displaystyle T}

    of



    G


    {\displaystyle G}

    , with the additional condition that the dimension of the centre of



    H


    {\displaystyle H}

    is non-zero. In this case the compact Hermitian symmetric space



    G

    /

    H


    {\displaystyle G/H}

    is a Kähler manifold, for example when



    H
    =
    T


    {\displaystyle H=T}

    . The physical states lie in a single orbit of the affine Weyl group, which again implies the Weyl–Kac character formula for the affine Kac–Moody algebra of



    G


    {\displaystyle G}

    .


    See also


    Virasoro algebra
    Super Virasoro algebra
    Coset construction
    Type IIB string theory


    Notes




    References


    Ademollo, M.; Brink, L.; D'Adda, A.; D'Auria, R.; Napolitano, E.; Sciuto, S.; Giudice, E. Del; Vecchia, P. Di; Ferrara, S.; Gliozzi, F.; Musto, R.; Pettorino, R. (1976), "Supersymmetric strings and colour confinement", Physics Letters B, 62 (1): 105–110, Bibcode:1976PhLB...62..105A, doi:10.1016/0370-2693(76)90061-7
    Boucher, W.; Friedan, D; Kent, A. (1986), "Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification", Phys. Lett. B, 172 (3–4): 316–322, Bibcode:1986PhLB..172..316B, doi:10.1016/0370-2693(86)90260-1
    Di Vecchia, P.; Petersen, J. L.; Yu, M.; Zheng, H. B. (1986), "Explicit construction of unitary representations of the N = 2 superconformal algebra", Phys. Lett. B, 174 (3): 280–284, Bibcode:1986PhLB..174..280D, doi:10.1016/0370-2693(86)91099-3
    Eguchi, Tohru; Yang, Sung-Kil (1990), "N = 2 superconformal models as topological field theories", Mod. Phys. Lett. A, 5 (21): 1693–1701, Bibcode:1990MPLA....5.1693E, doi:10.1142/S0217732390001943
    Goddard, P.; Kent, A.; Olive, D. (1986), "Unitary representations of the Virasoro and super-Virasoro algebras", Comm. Math. Phys., 103 (1): 105–119, Bibcode:1986CMaPh.103..105G, doi:10.1007/bf01464283, S2CID 91181508
    Green, Michael B.; Schwarz, John H.; Witten, Edward (1988a), Superstring theory, Volume 1: Introduction, Cambridge University Press, ISBN 0-521-35752-7
    Green, Michael B.; Schwarz, John H.; Witten, Edward (1988b), Superstring theory, Volume 2: Loop amplitudes, anomalies and phenomenology, Cambridge University Press, Bibcode:1987cup..bookR....G, ISBN 0-521-35753-5
    Kazama, Yoichi; Suzuki, Hisao (1989), "New N = 2 superconformal field theories and superstring compactification", Nuclear Physics B, 321 (1): 232–268, Bibcode:1989NuPhB.321..232K, doi:10.1016/0550-3213(89)90250-2
    Schwimmer, A.; Seiberg, N. (1987), "Comments on the N = 2, 3, 4 superconformal algebras in two dimensions", Phys. Lett. B, 184 (2–3): 191–196, Bibcode:1987PhLB..184..191S, doi:10.1016/0370-2693(87)90566-1
    Voisin, Claire (1999), Mirror symmetry, SMF/AMS texts and monographs, vol. 1, American Mathematical Society, ISBN 0-8218-1947-X
    Wassermann, A. J. (2010) [1998]. "Lecture notes on Kac-Moody and Virasoro algebras". arXiv:1004.1287.
    West, Peter C. (1990), Introduction to supersymmetry and supergravity (2nd ed.), World Scientific, pp. 337–8, ISBN 981-02-0099-4

Kata Kunci Pencarian:

n 2 superconformal algebra