- Source: U. S. R. Murty
- Teori graf
- Metode simpleks
- Indonesia
- Gempa bumi dan tsunami Samudra Hindia 2004
- N. R. Narayana Murthy
- Gelombang badai
- Leflunomida
- Therīgāthā
- Bahasa Shina
- Obaid Siddiqi
- U. S. R. Murty
- Uppaluri
- C. R. Rao
- N. R. Narayana Murthy
- List of Indian mathematicians
- John Adrian Bondy
- W. T. Tutte
- Herschel graph
- List of Indo-Canadians
- Simplex algorithm
Artikel: U. S. R. Murty GudangMovies21 Rebahinxxi
Uppaluri Siva Ramachandra Murty, or s=u" target="_blank">U. S. R. Murty (as he prefers to write his name), is a Professor Emeritus of the Department of Combinatorics and Optimization, University of Waterloo.
s=u" target="_blank">U. S. R. Murty received his Ph.D. in 1967 from the Indian Statistical Institute, Calcutta, with a thesis on extremal graph theory; his advisor was C. R. Rao. Murty is well known for his work in matroid theory and graph theory, and mainly for being a co-author with J. A. Bondy of a textbook on graph theory. Murty has served as a managing editor and co-editor-in-chief of the Journal of Combinatorial Theory, Series B.
Selected publications
John Adrian Bondy and s=u" target="_blank">U. S. R. Murty (1976), Graph Theory with Applications. North-Holland. Book's page at the University of Paris VI.
John Adrian Bondy and s=u" target="_blank">U. S. R. Murty (1979), "Graph Theory and Related Topics." Academic Press Inc. ISBN 978-0121143503.
s=u" target="_blank">U. S. R. Murty (1971) How Many Magic Configurations are There? The American Mathematical Monthly.
s=u" target="_blank">U. S. R. Murty (1971) Equicardinal matroids. Journal of Combinatorial Theory, Series B
s=u" target="_blank">U. S. R. Murty (1970) Matroids with Sylvester property. Aequationes Mathematicae.
Murty, s=u" target="_blank">U. S. R. (1968), "On some extremal graphs", Acta Mathematica Academiae Scientiarum Hungaricae, 19 (1–2): 69–74, doi:10.1007/BF01894681, MR 0224509, S2CID 116198339
de Carvalho, Marcelo H.; Lucchesi, Cláudio L.; Murty, s=u" target="_blank">U. S. R. (2002), "On a conjecture of Lovász concerning bricks. II. Bricks of finite characteristic", Journal of Combinatorial Theory, Series B, 85 (1): 137–180, doi:10.1006/jctb.2001.2092, MR 1900684.