Algoritme
semut diperkenalkan oleh Moyson dan Manderick dan secara meluas dikembangkan oleh Marco Dorigo, merupakan teknik probabilistik untuk menyelesaikan masalah komputasi dengan menemukan jalur terbaik melalui grafik. Algoritme ini terinspirasi oleh perilaku
semut dalam menemukan jalur dari koloninya menuju makanan.
Tinjauan umum
Pada dunia nyata,
semut berkeliling secara acak, dan ketika menemukan makanan mereka kembali ke koloninya sambil memberikan tanda dengan jejak feromon. Jika
semut-
semut lain menemukan jalur tersebut, mereka tidak akan bepergian dengan acak lagi, melainkan akan mengikuti jejak tersebut, kembali dan menguatkannya jika pada akhirnya merekapun menemukan makanan.
Seiring waktu, bagaimanapun juga jejak feromon akan menguap dan akan mengurangi kekuatan daya tariknya. Lebih lama seekor
semut pulang pergi melalui jalur tersebut, lebih lama jugalah feromon menguap. Sebagai perbandingan, sebuah jalur yang pendek akan berbaris lebih cepat, dan dengan demikian kerapatan feromon akan tetap tinggi karena terletak pada jalur secepat penguapannya. Penguapan feromon juga mempunyai keuntungan untuk mencegah konvergensi pada penyelesaian optimal secara lokal. Jika tidak ada penguapan sama sekali, jalur yang dipilih
semut pertama akan cenderung menarik secara berlebihan terhadap
semut-
semut yang mengikutinya. Pada kasus yang demikian, eksplorasi ruang penyelesaian akan terbatasi.
Oleh karena itu, ketika seekor
semut menemukan jalur yang bagus (jalur yang pendek) dari koloni ke sumber makanan,
semut lainnya akan mengikuti jalur tersebut, dan akhirnya semua
semut akan mengikuti sebuah jalur tunggal. Ide algoritme koloni
semut adalah untuk meniru perilaku ini melalui '
semut tiruan' berjalan seputar grafik yang menunjukkan masalah yang harus diselesaikan.
Algoritme optimisasi koloni
semut telah digunakan untuk menghasilkan penyelesaian yang mendekati optimal pada masalah salesman yang melakukan perjalanan. Algoritme
semut lebih menguntungkan daripada pendekatan penguatan tiruan (simulaten annealing) dan algoritme genetik saat grafik mungkin berubah secara dinamis; algoritme koloni
semut dapat berjalan secara kontinu dan menyesuaikan dengan perubahan secara waktu nyata (real time). Hal ini menarik dalam routing jaringan dan sistem transportasi urban.
Referensi