- Source: Artin algebra
In algebra, an Artin algebra is an algebra Λ over a commutative Artin ring R that is a finitely generated R-module. They are named after Emil Artin.
Every Artin algebra is an Artin ring.
Dual and transpose
There are several different dualities taking finitely generated modules over Λ to modules over the opposite algebra Λop.
If M is a left Λ-module then the right Λ-module M* is defined to be HomΛ(M,Λ).
The dual D(M) of a left Λ-module M is the right Λ-module D(M) = HomR(M,J), where J is the dualizing module of R, equal to the sum of the injective envelopes of the non-isomorphic simple R-modules or equivalently the injective envelope of R/rad R. The dual of a left module over Λ does not depend on the choice of R (up to isomorphism).
The transpose Tr(M) of a left Λ-module M is a right Λ-module defined to be the cokernel of the map Q* → P*, where P → Q → M → 0 is a minimal projective presentation of M.
References
Auslander, Maurice; Reiten, Idun; Smalø, Sverre O. (1997) [1995], Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, ISBN 978-0-521-59923-8, MR 1314422, Zbl 0834.16001
Kata Kunci Pencarian:
- Joseph Wedderburn
- Subgrup
- Oscar Zariski
- Tindakan grup (matematika)
- Aljabar abstrak
- Gelanggang (matematika)
- Ruang vektor
- Lapangan (matematika)
- Bilangan hiperkompleks
- Teori Galois
- Artin algebra
- Michael Artin
- Emil Artin
- Wedderburn–Artin theorem
- Artinian ring
- Abstract algebra
- Associative algebra
- List of things named after Emil Artin
- Algebraic stack
- Artin conjecture