• Source: Classifying space for SU(n)
  • In mathematics, the classifying space



    BSU

    (
    n
    )


    {\displaystyle \operatorname {BSU} (n)}

    for the special unitary group



    SU

    (
    n
    )


    {\displaystyle \operatorname {SU} (n)}

    is the base space of the universal



    SU

    (
    n
    )


    {\displaystyle \operatorname {SU} (n)}

    principal bundle



    ESU

    (
    n
    )

    BSU

    (
    n
    )


    {\displaystyle \operatorname {ESU} (n)\rightarrow \operatorname {BSU} (n)}

    . This means that



    SU

    (
    n
    )


    {\displaystyle \operatorname {SU} (n)}

    principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into



    BSU

    (
    n
    )


    {\displaystyle \operatorname {BSU} (n)}

    . The isomorphism is given by pullback.


    Definition


    There is a canonical inclusion of complex oriented Grassmannians given by







    Gr
    ~




    n


    (


    C


    k


    )





    Gr
    ~




    n


    (


    C


    k
    +
    1


    )
    ,
    V

    V
    ×
    {
    0
    }


    {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}}

    . Its colimit is:




    BSU

    (
    n
    )
    :=




    Gr
    ~




    n


    (


    C





    )
    :=

    lim

    n








    Gr
    ~




    n


    (


    C


    k


    )
    .


    {\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}


    Since real oriented Grassmannians can be expressed as a homogeneous space by:








    Gr
    ~




    n


    (


    C


    k


    )
    =
    SU

    (
    n
    +
    k
    )

    /

    (
    SU

    (
    n
    )
    ×
    SU

    (
    k
    )
    )


    {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})=\operatorname {SU} (n+k)/(\operatorname {SU} (n)\times \operatorname {SU} (k))}


    the group structure carries over to



    BSU

    (
    n
    )


    {\displaystyle \operatorname {BSU} (n)}

    .


    Simplest classifying spaces


    Since



    SU

    (
    1
    )

    1


    {\displaystyle \operatorname {SU} (1)\cong 1}

    is the trivial group,



    BSU

    (
    1
    )

    {

    }


    {\displaystyle \operatorname {BSU} (1)\cong \{*\}}

    is the trivial topological space.
    Since



    SU

    (
    2
    )

    Sp

    (
    1
    )


    {\displaystyle \operatorname {SU} (2)\cong \operatorname {Sp} (1)}

    , one has



    BSU

    (
    2
    )

    BSp

    (
    1
    )


    H


    P






    {\displaystyle \operatorname {BSU} (2)\cong \operatorname {BSp} (1)\cong \mathbb {H} P^{\infty }}

    .


    Classification of principal bundles


    Given a topological space



    X


    {\displaystyle X}

    the set of



    SU

    (
    n
    )


    {\displaystyle \operatorname {SU} (n)}

    principal bundles on it up to isomorphism is denoted




    Prin

    SU

    (
    n
    )



    (
    X
    )


    {\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)}

    . If



    X


    {\displaystyle X}

    is a CW complex, then the map:




    [
    X
    ,
    BSU

    (
    n
    )
    ]


    Prin

    SU

    (
    n
    )



    (
    X
    )
    ,
    [
    f
    ]


    f




    ESU

    (
    n
    )


    {\displaystyle [X,\operatorname {BSU} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SU} (n)}(X),[f]\mapsto f^{*}\operatorname {ESU} (n)}


    is bijective.


    Cohomology ring


    The cohomology ring of



    BSU

    (
    n
    )


    {\displaystyle \operatorname {BSU} (n)}

    with coefficients in the ring




    Z



    {\displaystyle \mathbb {Z} }

    of integers is generated by the Chern classes:





    H




    (
    BSU

    (
    n
    )
    ;

    Z

    )
    =

    Z

    [

    c

    2


    ,

    ,

    c

    n


    ]
    .


    {\displaystyle H^{*}(\operatorname {BSU} (n);\mathbb {Z} )=\mathbb {Z} [c_{2},\ldots ,c_{n}].}



    Infinite classifying space


    The canonical inclusions



    SU

    (
    n
    )

    SU

    (
    n
    +
    1
    )


    {\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)}

    induce canonical inclusions



    BSU

    (
    n
    )

    BSU

    (
    n
    +
    1
    )


    {\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)}

    on their respective classifying spaces. Their respective colimits are denoted as:




    SU
    :=

    lim

    n




    SU

    (
    n
    )
    ;


    {\displaystyle \operatorname {SU} :=\lim _{n\rightarrow \infty }\operatorname {SU} (n);}





    BSU
    :=

    lim

    n




    BSU

    (
    n
    )
    .


    {\displaystyle \operatorname {BSU} :=\lim _{n\rightarrow \infty }\operatorname {BSU} (n).}





    BSU


    {\displaystyle \operatorname {BSU} }

    is indeed the classifying space of



    SU


    {\displaystyle \operatorname {SU} }

    .


    See also


    Classifying space for O(n)
    Classifying space for SO(n)
    Classifying space for U(n)


    Literature


    Hatcher, Allen (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 0-521-79160-X.
    Mitchell, Stephen (August 2001). Universal principal bundles and classifying spaces (PDF).{{cite book}}: CS1 maint: year (link)


    External links


    classifying space on nLab
    BSU(n) on nLab


    References

Kata Kunci Pencarian: