- Source: Complex analytic variety
In mathematics, particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold that allows the presence of singularities. Complex analytic varieties are locally ringed spaces that are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.
Definition
Denote the constant sheaf on a topological space with value
C
{\displaystyle \mathbb {C} }
by
C
_
{\displaystyle {\underline {\mathbb {C} }}}
. A
C
{\displaystyle \mathbb {C} }
-space is a locally ringed space
(
X
,
O
X
)
{\displaystyle (X,{\mathcal {O}}_{X})}
, whose structure sheaf is an algebra over
C
_
{\displaystyle {\underline {\mathbb {C} }}}
.
Choose an open subset
U
{\displaystyle U}
of some complex affine space
C
n
{\displaystyle \mathbb {C} ^{n}}
, and fix finitely many holomorphic functions
f
1
,
…
,
f
k
{\displaystyle f_{1},\dots ,f_{k}}
in
U
{\displaystyle U}
. Let
X
=
V
(
f
1
,
…
,
f
k
)
{\displaystyle X=V(f_{1},\dots ,f_{k})}
be the common vanishing locus of these holomorphic functions, that is,
X
=
{
x
∣
f
1
(
x
)
=
⋯
=
f
k
(
x
)
=
0
}
{\displaystyle X=\{x\mid f_{1}(x)=\cdots =f_{k}(x)=0\}}
. Define a sheaf of rings on
X
{\displaystyle X}
by letting
O
X
{\displaystyle {\mathcal {O}}_{X}}
be the restriction to
X
{\displaystyle X}
of
O
U
/
(
f
1
,
…
,
f
k
)
{\displaystyle {\mathcal {O}}_{U}/(f_{1},\ldots ,f_{k})}
, where
O
U
{\displaystyle {\mathcal {O}}_{U}}
is the sheaf of holomorphic functions on
U
{\displaystyle U}
. Then the locally ringed
C
{\displaystyle \mathbb {C} }
-space
(
X
,
O
X
)
{\displaystyle (X,{\mathcal {O}}_{X})}
is a local model space.
A complex analytic variety is a locally ringed
C
{\displaystyle \mathbb {C} }
-space
(
X
,
O
X
)
{\displaystyle (X,{\mathcal {O}}_{X})}
that is locally isomorphic to a local model space.
Morphisms of complex analytic varieties are defined to be morphisms of the underlying locally ringed spaces, they are also called holomorphic maps. A structure sheaf may have nilpotent element,
and also, when the complex analytic space whose structure sheaf is reduced, then the complex analytic space is reduced, that is, the complex analytic space may not be reduced.
An associated complex analytic space (variety)
X
h
{\displaystyle X_{h}}
is such that;
Let X be schemes finite type over
C
{\displaystyle \mathbb {C} }
, and cover X with open affine subset
Y
i
=
Spec
A
i
{\displaystyle Y_{i}=\operatorname {Spec} A_{i}}
(
X
=
∪
Y
i
{\displaystyle X=\cup Y_{i}}
) (Spectrum of a ring). Then each
A
i
{\displaystyle A_{i}}
is an algebra of finite type over
C
{\displaystyle \mathbb {C} }
, and
A
i
≃
C
[
z
1
,
…
,
z
n
]
/
(
f
1
,
…
,
f
m
)
{\displaystyle A_{i}\simeq \mathbb {C} [z_{1},\dots ,z_{n}]/(f_{1},\dots ,f_{m})}
. Where
f
1
,
…
,
f
m
{\displaystyle f_{1},\dots ,f_{m}}
are polynomial in
z
1
,
…
,
z
n
{\displaystyle z_{1},\dots ,z_{n}}
, which can be regarded as a holomorphic function on
C
{\displaystyle \mathbb {C} }
. Therefore, their common zero of the set is the complex analytic subspace
(
Y
i
)
h
⊆
C
{\displaystyle (Y_{i})_{h}\subseteq \mathbb {C} }
. Here, scheme X obtained by glueing the data of the set
Y
i
{\displaystyle Y_{i}}
, and then the same data can be used to glueing the complex analytic space
(
Y
i
)
h
{\displaystyle (Y_{i})_{h}}
into an complex analytic space
X
h
{\displaystyle X_{h}}
, so we call
X
h
{\displaystyle X_{h}}
a associated complex analytic space with X. The complex analytic space X is reduced if and only if the associated complex analytic space
X
h
{\displaystyle X_{h}}
reduced.
See also
Algebraic variety - Roughly speaking, an (complex) analytic variety is a zero locus of a set of an (complex) analytic function, while an algebraic variety is a zero locus of a set of a polynomial function and allowing singular point.
Analytic space – locally ringed space glued together from analytic varietiesPages displaying wikidata descriptions as a fallback
Complex algebraic variety
GAGA – Two closely related mathematical subjectsPages displaying short descriptions of redirect targets
Rigid analytic space – An analogue of a complex analytic space over a nonarchimedean field
Note
Annotation
References
Future reading
External links
Kata Kunci Pencarian:
- Geometri kompleks
- Complex analytic variety
- Complex geometry
- Algebraic geometry and analytic geometry
- Complex manifold
- Complete variety
- Function of several complex variables
- Complex algebraic variety
- Projective variety
- Complex dynamics
- Algebraic geometry