No More Posts Available.

No more pages to load.

  • Source: Daftar integral dari fungsi irasional
  • Artikel ini merupakan daftar integral dari fungsi irrasional. Untuk daftar integral lainnya, lihat tabel integral.


    Integral melibatkan





    r
    =



    x

    2


    +

    a

    2






    {\displaystyle r={\sqrt {x^{2}+a^{2}}}}






    r

    d
    x
    =


    1
    2



    (

    x
    r
    +

    a

    2



    ln


    (

    x
    +
    r

    )


    )



    {\displaystyle \int r\;dx={\frac {1}{2}}\left(xr+a^{2}\,\ln \left(x+r\right)\right)}







    r

    3



    d
    x
    =


    1
    4


    x

    r

    3


    +


    1
    8


    3

    a

    2


    x
    r
    +


    3
    8



    a

    4


    ln


    (

    x
    +
    r

    )



    {\displaystyle \int r^{3}\;dx={\frac {1}{4}}xr^{3}+{\frac {1}{8}}3a^{2}xr+{\frac {3}{8}}a^{4}\ln \left(x+r\right)}







    r

    5



    d
    x
    =


    1
    6


    x

    r

    5


    +


    5
    24



    a

    2


    x

    r

    3


    +


    5
    16



    a

    4


    x
    r
    +


    5
    16



    a

    6


    ln


    (

    x
    +
    r

    )



    {\displaystyle \int r^{5}\;dx={\frac {1}{6}}xr^{5}+{\frac {5}{24}}a^{2}xr^{3}+{\frac {5}{16}}a^{4}xr+{\frac {5}{16}}a^{6}\ln \left(x+r\right)}






    x
    r

    d
    x
    =



    r

    3


    3




    {\displaystyle \int xr\;dx={\frac {r^{3}}{3}}}






    x

    r

    3



    d
    x
    =



    r

    5


    5




    {\displaystyle \int xr^{3}\;dx={\frac {r^{5}}{5}}}






    x

    r

    2
    n
    +
    1



    d
    x
    =



    r

    2
    n
    +
    3



    2
    n
    +
    3





    {\displaystyle \int xr^{2n+1}\;dx={\frac {r^{2n+3}}{2n+3}}}







    x

    2


    r

    d
    x
    =



    x

    r

    3



    4







    a

    2


    x
    r

    8






    a

    4


    8


    ln


    (

    x
    +
    r

    )



    {\displaystyle \int x^{2}r\;dx={\frac {xr^{3}}{4}}-{\frac {a^{2}xr}{8}}-{\frac {a^{4}}{8}}\ln \left(x+r\right)}







    x

    2



    r

    3



    d
    x
    =



    x

    r

    5



    6







    a

    2


    x

    r

    3



    24







    a

    4


    x
    r

    16






    a

    6


    16


    ln


    (

    x
    +
    r

    )



    {\displaystyle \int x^{2}r^{3}\;dx={\frac {xr^{5}}{6}}-{\frac {a^{2}xr^{3}}{24}}-{\frac {a^{4}xr}{16}}-{\frac {a^{6}}{16}}\ln \left(x+r\right)}







    x

    3


    r

    d
    x
    =



    r

    5


    5







    a

    2



    r

    3



    3




    {\displaystyle \int x^{3}r\;dx={\frac {r^{5}}{5}}-{\frac {a^{2}r^{3}}{3}}}







    x

    3



    r

    3



    d
    x
    =



    r

    7


    7







    a

    2



    r

    5



    5




    {\displaystyle \int x^{3}r^{3}\;dx={\frac {r^{7}}{7}}-{\frac {a^{2}r^{5}}{5}}}







    x

    3



    r

    2
    n
    +
    1



    d
    x
    =



    r

    2
    n
    +
    5



    2
    n
    +
    5








    a

    3



    r

    2
    n
    +
    3




    2
    n
    +
    3





    {\displaystyle \int x^{3}r^{2n+1}\;dx={\frac {r^{2n+5}}{2n+5}}-{\frac {a^{3}r^{2n+3}}{2n+3}}}







    x

    4


    r

    d
    x
    =




    x

    3



    r

    3



    6







    a

    2


    x

    r

    3



    8


    +




    a

    4


    x
    r

    16


    +



    a

    6


    16


    ln


    (

    x
    +
    r

    )



    {\displaystyle \int x^{4}r\;dx={\frac {x^{3}r^{3}}{6}}-{\frac {a^{2}xr^{3}}{8}}+{\frac {a^{4}xr}{16}}+{\frac {a^{6}}{16}}\ln \left(x+r\right)}







    x

    4



    r

    3



    d
    x
    =




    x

    3



    r

    5



    8







    a

    2


    x

    r

    5



    16


    +




    a

    4


    x

    r

    3



    64


    +



    3

    a

    6


    x
    r

    128


    +



    3

    a

    8



    128


    ln


    (

    x
    +
    r

    )



    {\displaystyle \int x^{4}r^{3}\;dx={\frac {x^{3}r^{5}}{8}}-{\frac {a^{2}xr^{5}}{16}}+{\frac {a^{4}xr^{3}}{64}}+{\frac {3a^{6}xr}{128}}+{\frac {3a^{8}}{128}}\ln \left(x+r\right)}







    x

    5


    r

    d
    x
    =



    r

    7


    7






    2

    a

    2



    r

    5



    5


    +




    a

    4



    r

    3



    3




    {\displaystyle \int x^{5}r\;dx={\frac {r^{7}}{7}}-{\frac {2a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}}







    x

    5



    r

    3



    d
    x
    =



    r

    9


    9






    2

    a

    2



    r

    7



    7


    +




    a

    4



    r

    5



    5




    {\displaystyle \int x^{5}r^{3}\;dx={\frac {r^{9}}{9}}-{\frac {2a^{2}r^{7}}{7}}+{\frac {a^{4}r^{5}}{5}}}







    x

    5



    r

    2
    n
    +
    1



    d
    x
    =



    r

    2
    n
    +
    7



    2
    n
    +
    7







    2

    a

    2



    r

    2
    n
    +
    5




    2
    n
    +
    5



    +




    a

    4



    r

    2
    n
    +
    3




    2
    n
    +
    3





    {\displaystyle \int x^{5}r^{2n+1}\;dx={\frac {r^{2n+7}}{2n+7}}-{\frac {2a^{2}r^{2n+5}}{2n+5}}+{\frac {a^{4}r^{2n+3}}{2n+3}}}









    r

    d
    x

    x


    =
    r

    a
    ln


    |



    a
    +
    r

    x


    |

    =
    r

    a

    sinh


    1





    a
    x




    {\displaystyle \int {\frac {r\;dx}{x}}=r-a\ln \left|{\frac {a+r}{x}}\right|=r-a\sinh ^{-1}{\frac {a}{x}}}










    r

    3



    d
    x

    x


    =



    r

    3


    3


    +

    a

    2


    r


    a

    3


    ln


    |



    a
    +
    r

    x


    |



    {\displaystyle \int {\frac {r^{3}\;dx}{x}}={\frac {r^{3}}{3}}+a^{2}r-a^{3}\ln \left|{\frac {a+r}{x}}\right|}










    r

    5



    d
    x

    x


    =



    r

    5


    5


    +




    a

    2



    r

    3



    3


    +

    a

    4


    r


    a

    5


    ln


    |



    a
    +
    r

    x


    |



    {\displaystyle \int {\frac {r^{5}\;dx}{x}}={\frac {r^{5}}{5}}+{\frac {a^{2}r^{3}}{3}}+a^{4}r-a^{5}\ln \left|{\frac {a+r}{x}}\right|}










    r

    7



    d
    x

    x


    =



    r

    7


    7


    +




    a

    2



    r

    5



    5


    +




    a

    4



    r

    3



    3


    +

    a

    6


    r


    a

    7


    ln


    |



    a
    +
    r

    x


    |



    {\displaystyle \int {\frac {r^{7}\;dx}{x}}={\frac {r^{7}}{7}}+{\frac {a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}+a^{6}r-a^{7}\ln \left|{\frac {a+r}{x}}\right|}









    d
    x

    r


    =

    sinh


    1





    x
    a


    =
    ln


    |

    x
    +
    r

    |



    {\displaystyle \int {\frac {dx}{r}}=\sinh ^{-1}{\frac {x}{a}}=\ln \left|x+r\right|}









    d
    x


    r

    3




    =


    x


    a

    2


    r





    {\displaystyle \int {\frac {dx}{r^{3}}}={\frac {x}{a^{2}r}}}









    x

    d
    x

    r


    =
    r


    {\displaystyle \int {\frac {x\,dx}{r}}=r}









    x

    d
    x


    r

    3




    =



    1
    r




    {\displaystyle \int {\frac {x\,dx}{r^{3}}}=-{\frac {1}{r}}}










    x

    2



    d
    x

    r


    =


    x
    2


    r




    a

    2


    2




    sinh


    1





    x
    a


    =


    x
    2


    r




    a

    2


    2


    ln


    |

    x
    +
    r

    |



    {\displaystyle \int {\frac {x^{2}\;dx}{r}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\,\sinh ^{-1}{\frac {x}{a}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\ln \left|x+r\right|}









    d
    x


    x
    r



    =



    1
    a




    sinh


    1





    a
    x


    =



    1
    a


    ln


    |



    a
    +
    r

    x


    |



    {\displaystyle \int {\frac {dx}{xr}}=-{\frac {1}{a}}\,\sinh ^{-1}{\frac {a}{x}}=-{\frac {1}{a}}\ln \left|{\frac {a+r}{x}}\right|}



    Integral melibatkan





    s
    =



    x

    2




    a

    2






    {\displaystyle s={\sqrt {x^{2}-a^{2}}}}


    Anggap



    (

    x

    2


    >

    a

    2


    )


    {\displaystyle (x^{2}>a^{2})}

    , untuk



    (

    x

    2


    <

    a

    2


    )


    {\displaystyle (x^{2}
    , perhatikan bagian berikutnya:





    x
    s

    d
    x
    =


    1
    3



    s

    3




    {\displaystyle \int xs\;dx={\frac {1}{3}}s^{3}}









    s

    d
    x

    x


    =
    s

    a

    cos


    1




    |


    a
    x


    |



    {\displaystyle \int {\frac {s\;dx}{x}}=s-a\cos ^{-1}\left|{\frac {a}{x}}\right|}









    d
    x

    s


    =




    d
    x



    x

    2




    a

    2





    =
    ln


    |



    x
    +
    s

    a


    |



    {\displaystyle \int {\frac {dx}{s}}=\int {\frac {dx}{\sqrt {x^{2}-a^{2}}}}=\ln \left|{\frac {x+s}{a}}\right|}


    Perhatikan bahwa



    ln


    |



    x
    +
    s

    a


    |

    =

    s
    g
    n

    (
    x
    )

    cosh


    1




    |


    x
    a


    |

    =


    1
    2


    ln


    (



    x
    +
    s


    x

    s



    )



    {\displaystyle \ln \left|{\frac {x+s}{a}}\right|=\mathrm {sgn} (x)\cosh ^{-1}\left|{\frac {x}{a}}\right|={\frac {1}{2}}\ln \left({\frac {x+s}{x-s}}\right)}

    , dimana nilai positif dari




    cosh


    1




    |


    x
    a


    |



    {\displaystyle \cosh ^{-1}\left|{\frac {x}{a}}\right|}

    lah yang diambil.








    x

    d
    x

    s


    =
    s


    {\displaystyle \int {\frac {x\;dx}{s}}=s}









    x

    d
    x


    s

    3




    =



    1
    s




    {\displaystyle \int {\frac {x\;dx}{s^{3}}}=-{\frac {1}{s}}}









    x

    d
    x


    s

    5




    =



    1

    3

    s

    3







    {\displaystyle \int {\frac {x\;dx}{s^{5}}}=-{\frac {1}{3s^{3}}}}









    x

    d
    x


    s

    7




    =



    1

    5

    s

    5







    {\displaystyle \int {\frac {x\;dx}{s^{7}}}=-{\frac {1}{5s^{5}}}}









    x

    d
    x


    s

    2
    n
    +
    1




    =



    1

    (
    2
    n

    1
    )

    s

    2
    n

    1







    {\displaystyle \int {\frac {x\;dx}{s^{2n+1}}}=-{\frac {1}{(2n-1)s^{2n-1}}}}










    x

    2
    m



    d
    x


    s

    2
    n
    +
    1




    =



    1

    2
    n

    1






    x

    2
    m

    1



    s

    2
    n

    1




    +



    2
    m

    1


    2
    n

    1








    x

    2
    m

    2



    d
    x


    s

    2
    n

    1






    {\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=-{\frac {1}{2n-1}}{\frac {x^{2m-1}}{s^{2n-1}}}+{\frac {2m-1}{2n-1}}\int {\frac {x^{2m-2}\;dx}{s^{2n-1}}}}










    x

    2



    d
    x

    s


    =



    x
    s

    2


    +



    a

    2


    2


    ln


    |



    x
    +
    s

    a


    |



    {\displaystyle \int {\frac {x^{2}\;dx}{s}}={\frac {xs}{2}}+{\frac {a^{2}}{2}}\ln \left|{\frac {x+s}{a}}\right|}










    x

    2



    d
    x


    s

    3




    =



    x
    s


    +
    ln


    |



    x
    +
    s

    a


    |



    {\displaystyle \int {\frac {x^{2}\;dx}{s^{3}}}=-{\frac {x}{s}}+\ln \left|{\frac {x+s}{a}}\right|}










    x

    4



    d
    x

    s


    =




    x

    3


    s

    4


    +


    3
    8



    a

    2


    x
    s
    +


    3
    8



    a

    4


    ln


    |



    x
    +
    s

    a


    |



    {\displaystyle \int {\frac {x^{4}\;dx}{s}}={\frac {x^{3}s}{4}}+{\frac {3}{8}}a^{2}xs+{\frac {3}{8}}a^{4}\ln \left|{\frac {x+s}{a}}\right|}










    x

    4



    d
    x


    s

    3




    =



    x
    s

    2







    a

    2


    x

    s


    +


    3
    2



    a

    2


    ln


    |



    x
    +
    s

    a


    |



    {\displaystyle \int {\frac {x^{4}\;dx}{s^{3}}}={\frac {xs}{2}}-{\frac {a^{2}x}{s}}+{\frac {3}{2}}a^{2}\ln \left|{\frac {x+s}{a}}\right|}










    x

    4



    d
    x


    s

    5




    =



    x
    s





    1
    3





    x

    3



    s

    3




    +
    ln


    |



    x
    +
    s

    a


    |



    {\displaystyle \int {\frac {x^{4}\;dx}{s^{5}}}=-{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}+\ln \left|{\frac {x+s}{a}}\right|}










    x

    2
    m



    d
    x


    s

    2
    n
    +
    1




    =
    (

    1

    )

    n

    m




    1

    a

    2
    (
    n

    m
    )







    i
    =
    0


    n

    m

    1




    1

    2
    (
    m
    +
    i
    )
    +
    1






    (



    n

    m

    1

    i


    )






    x

    2
    (
    m
    +
    i
    )
    +
    1



    s

    2
    (
    m
    +
    i
    )
    +
    1







    (


    n
    >
    m

    0


    )




    {\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=(-1)^{n-m}{\frac {1}{a^{2(n-m)}}}\sum _{i=0}^{n-m-1}{\frac {1}{2(m+i)+1}}{n-m-1 \choose i}{\frac {x^{2(m+i)+1}}{s^{2(m+i)+1}}}\qquad {\mbox{(}}n>m\geq 0{\mbox{)}}}









    d
    x


    s

    3




    =



    1

    a

    2






    x
    s




    {\displaystyle \int {\frac {dx}{s^{3}}}=-{\frac {1}{a^{2}}}{\frac {x}{s}}}









    d
    x


    s

    5




    =


    1

    a

    4





    [



    x
    s





    1
    3





    x

    3



    s

    3





    ]



    {\displaystyle \int {\frac {dx}{s^{5}}}={\frac {1}{a^{4}}}\left[{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}\right]}









    d
    x


    s

    7




    =



    1

    a

    6





    [



    x
    s





    2
    3





    x

    3



    s

    3




    +


    1
    5





    x

    5



    s

    5





    ]



    {\displaystyle \int {\frac {dx}{s^{7}}}=-{\frac {1}{a^{6}}}\left[{\frac {x}{s}}-{\frac {2}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]}









    d
    x


    s

    9




    =


    1

    a

    8





    [



    x
    s





    3
    3





    x

    3



    s

    3




    +


    3
    5





    x

    5



    s

    5







    1
    7





    x

    7



    s

    7





    ]



    {\displaystyle \int {\frac {dx}{s^{9}}}={\frac {1}{a^{8}}}\left[{\frac {x}{s}}-{\frac {3}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {3}{5}}{\frac {x^{5}}{s^{5}}}-{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]}










    x

    2



    d
    x


    s

    5




    =



    1

    a

    2







    x

    3



    3

    s

    3







    {\displaystyle \int {\frac {x^{2}\;dx}{s^{5}}}=-{\frac {1}{a^{2}}}{\frac {x^{3}}{3s^{3}}}}










    x

    2



    d
    x


    s

    7




    =


    1

    a

    4





    [



    1
    3





    x

    3



    s

    3







    1
    5





    x

    5



    s

    5





    ]



    {\displaystyle \int {\frac {x^{2}\;dx}{s^{7}}}={\frac {1}{a^{4}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]}










    x

    2



    d
    x


    s

    9




    =



    1

    a

    6





    [



    1
    3





    x

    3



    s

    3







    2
    5





    x

    5



    s

    5




    +


    1
    7





    x

    7



    s

    7





    ]



    {\displaystyle \int {\frac {x^{2}\;dx}{s^{9}}}=-{\frac {1}{a^{6}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {2}{5}}{\frac {x^{5}}{s^{5}}}+{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]}



    Integral melibatkan





    t
    =



    a

    2




    x

    2






    {\displaystyle t={\sqrt {a^{2}-x^{2}}}}






    t

    d
    x
    =


    1
    2



    (

    x
    t
    +

    a

    2


    arcsin



    x
    a



    )




    (



    |

    x

    |



    |

    a

    |



    )




    {\displaystyle \int t\;dx={\frac {1}{2}}\left(xt+a^{2}\arcsin {\frac {x}{a}}\right)\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}






    x
    t

    d
    x
    =



    1
    3



    t

    3





    (



    |

    x

    |



    |

    a

    |



    )




    {\displaystyle \int xt\;dx=-{\frac {1}{3}}t^{3}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}









    t

    d
    x

    x


    =
    t

    a
    ln


    |



    a
    +
    t

    x


    |




    (



    |

    x

    |



    |

    a

    |



    )




    {\displaystyle \int {\frac {t\;dx}{x}}=t-a\ln \left|{\frac {a+t}{x}}\right|\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}









    d
    x

    t


    =
    arcsin



    x
    a





    (



    |

    x

    |



    |

    a

    |



    )




    {\displaystyle \int {\frac {dx}{t}}=\arcsin {\frac {x}{a}}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}










    x

    2



    d
    x

    t


    =


    1
    2



    (


    x
    t
    +

    a

    2


    arcsin



    x
    a



    )




    (



    |

    x

    |



    |

    a

    |



    )




    {\displaystyle \int {\frac {x^{2}\;dx}{t}}={\frac {1}{2}}\left(-xt+a^{2}\arcsin {\frac {x}{a}}\right)\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}






    t

    d
    x
    =


    1
    2



    (

    x
    t

    sgn

    x


    cosh


    1




    |


    x
    a


    |


    )




    (untuk



    |

    x

    |



    |

    a

    |



    )




    {\displaystyle \int t\;dx={\frac {1}{2}}\left(xt-\operatorname {sgn} x\,\cosh ^{-1}\left|{\frac {x}{a}}\right|\right)\qquad {\mbox{(untuk }}|x|\geq |a|{\mbox{)}}}



    Integral melibatkan





    R
    =


    a

    x

    2


    +
    b
    x
    +
    c




    {\displaystyle R={\sqrt {ax^{2}+bx+c}}}









    d
    x

    R


    =


    1

    a



    ln


    |

    2


    a


    R
    +
    2
    a
    x
    +
    b

    |




    (untuk


    a
    >
    0


    )




    {\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln \left|2{\sqrt {a}}R+2ax+b\right|\qquad {\mbox{(untuk }}a>0{\mbox{)}}}









    d
    x

    R


    =


    1

    a





    sinh


    1






    2
    a
    x
    +
    b


    4
    a
    c


    b

    2








    (untuk


    a
    >
    0


    ,


    4
    a
    c


    b

    2


    >
    0


    )




    {\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\,\sinh ^{-1}{\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(untuk }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}









    d
    x

    R


    =


    1

    a



    ln


    |

    2
    a
    x
    +
    b

    |




    (untuk


    a
    >
    0


    ,


    4
    a
    c


    b

    2


    =
    0


    )




    {\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(untuk }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}}









    d
    x

    R


    =



    1


    a



    arcsin




    2
    a
    x
    +
    b



    b

    2



    4
    a
    c






    (untuk


    a
    <
    0


    ,


    4
    a
    c


    b

    2


    <
    0


    ,



    |

    2
    a
    x
    +
    b

    |

    <



    b

    2



    4
    a
    c




    )




    {\displaystyle \int {\frac {dx}{R}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(untuk }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{, }}\left|2ax+b\right|<{\sqrt {b^{2}-4ac}}{\mbox{)}}}









    d
    x


    R

    3




    =



    4
    a
    x
    +
    2
    b


    (
    4
    a
    c


    b

    2


    )
    R





    {\displaystyle \int {\frac {dx}{R^{3}}}={\frac {4ax+2b}{(4ac-b^{2})R}}}









    d
    x


    R

    5




    =



    4
    a
    x
    +
    2
    b


    3
    (
    4
    a
    c


    b

    2


    )
    R




    (



    1

    R

    2




    +



    8
    a


    4
    a
    c


    b

    2






    )



    {\displaystyle \int {\frac {dx}{R^{5}}}={\frac {4ax+2b}{3(4ac-b^{2})R}}\left({\frac {1}{R^{2}}}+{\frac {8a}{4ac-b^{2}}}\right)}









    d
    x


    R

    2
    n
    +
    1




    =


    2

    (
    2
    n

    1
    )
    (
    4
    a
    c


    b

    2


    )




    (




    2
    a
    x
    +
    b


    R

    2
    n

    1




    +
    4
    a
    (
    n

    1
    )




    d
    x


    R

    2
    n

    1





    )



    {\displaystyle \int {\frac {dx}{R^{2n+1}}}={\frac {2}{(2n-1)(4ac-b^{2})}}\left({\frac {2ax+b}{R^{2n-1}}}+4a(n-1)\int {\frac {dx}{R^{2n-1}}}\right)}








    x
    R



    d
    x
    =


    R
    a





    b

    2
    a







    d
    x

    R




    {\displaystyle \int {\frac {x}{R}}\;dx={\frac {R}{a}}-{\frac {b}{2a}}\int {\frac {dx}{R}}}








    x

    R

    3





    d
    x
    =




    2
    b
    x
    +
    4
    c


    (
    4
    a
    c


    b

    2


    )
    R





    {\displaystyle \int {\frac {x}{R^{3}}}\;dx=-{\frac {2bx+4c}{(4ac-b^{2})R}}}








    x

    R

    2
    n
    +
    1





    d
    x
    =



    1

    (
    2
    n

    1
    )
    a

    R

    2
    n

    1








    b

    2
    a







    d
    x


    R

    2
    n
    +
    1






    {\displaystyle \int {\frac {x}{R^{2n+1}}}\;dx=-{\frac {1}{(2n-1)aR^{2n-1}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{2n+1}}}}









    d
    x


    x
    R



    =



    1

    c



    ln


    (



    2


    c


    R
    +
    b
    x
    +
    2
    c

    x


    )



    {\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {c}}R+bx+2c}{x}}\right)}









    d
    x


    x
    R



    =



    1

    c




    sinh


    1




    (



    b
    x
    +
    2
    c



    |

    x

    |



    4
    a
    c


    b

    2







    )



    {\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\sinh ^{-1}\left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)}



    Integral melibatkan





    S
    =


    a
    x
    +
    b




    {\displaystyle S={\sqrt {ax+b}}}









    d
    x


    x


    a
    x
    +
    b






    =





    2


    b




    tanh


    1







    a
    x
    +
    b

    b





    {\displaystyle \int {\frac {dx}{x{\sqrt {ax+b}}}}\,=\,{\frac {-2}{\sqrt {b}}}\tanh ^{-1}{\sqrt {\frac {ax+b}{b}}}}









    a
    x
    +
    b

    x



    d
    x

    =

    2

    (



    a
    x
    +
    b





    b



    tanh


    1







    a
    x
    +
    b

    b




    )



    {\displaystyle \int {\frac {\sqrt {ax+b}}{x}}\,dx\;=\;2\left({\sqrt {ax+b}}-{\sqrt {b}}\tanh ^{-1}{\sqrt {\frac {ax+b}{b}}}\right)}









    x

    n



    a
    x
    +
    b




    d
    x

    =



    2

    a
    (
    2
    n
    +
    1
    )




    (


    x

    n




    a
    x
    +
    b



    b
    n




    x

    n

    1



    a
    x
    +
    b




    d
    x

    )



    {\displaystyle \int {\frac {x^{n}}{\sqrt {ax+b}}}\,dx\;=\;{\frac {2}{a(2n+1)}}\left(x^{n}{\sqrt {ax+b}}-bn\int {\frac {x^{n-1}}{\sqrt {ax+b}}}\,dx\right)}







    x

    n




    a
    x
    +
    b



    d
    x

    =



    2

    2
    n
    +
    1




    (


    x

    n
    +
    1




    a
    x
    +
    b


    +
    b

    x

    n




    a
    x
    +
    b



    n
    b


    x

    n

    1




    a
    x
    +
    b



    d
    x

    )



    {\displaystyle \int x^{n}{\sqrt {ax+b}}\,dx\;=\;{\frac {2}{2n+1}}\left(x^{n+1}{\sqrt {ax+b}}+bx^{n}{\sqrt {ax+b}}-nb\int x^{n-1}{\sqrt {ax+b}}\,dx\right)}



    = Referensi

    =
    Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1972, Dover: New York. (See chapter 3.)

Kata Kunci Pencarian: