- Source: Dirichlet function
In mathematics, the Dirichlet function is the indicator function
1
Q
{\displaystyle \mathbf {1} _{\mathbb {Q} }}
of the set of rational numbers
Q
{\displaystyle \mathbb {Q} }
, i.e.
1
Q
(
x
)
=
1
{\displaystyle \mathbf {1} _{\mathbb {Q} }(x)=1}
if x is a rational number and
1
Q
(
x
)
=
0
{\displaystyle \mathbf {1} _{\mathbb {Q} }(x)=0}
if x is not a rational number (i.e. is an irrational number).
1
Q
(
x
)
=
{
1
x
∈
Q
0
x
∉
Q
{\displaystyle \mathbf {1} _{\mathbb {Q} }(x)={\begin{cases}1&x\in \mathbb {Q} \\0&x\notin \mathbb {Q} \end{cases}}}
It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of a pathological function which provides counterexamples to many situations.
Topological properties
Periodicity
For any real number x and any positive rational number T,
1
Q
(
x
+
T
)
=
1
Q
(
x
)
{\displaystyle \mathbf {1} _{\mathbb {Q} }(x+T)=\mathbf {1} _{\mathbb {Q} }(x)}
. The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of
R
{\displaystyle \mathbb {R} }
.
Integration properties
See also
Thomae's function, a variation that is discontinuous only at the rational numbers
References
Kata Kunci Pencarian:
- Teori bilangan analitik
- Bilangan irasional
- Fungsi phi Euler
- Fungsi zeta Riemann
- Fungsi pembangkit
- Integral Riemann
- Integral
- Hipotesis Riemann
- Bilangan prima
- Turunan kedua
- Dirichlet function
- Dirichlet L-function
- Dirichlet eta function
- Dirichlet beta function
- Peter Gustav Lejeune Dirichlet
- Thomae's function
- Periodic function
- Dirichlet series
- Nowhere continuous function
- Generating function