• Source: Hermitian wavelet
    • Hermitian wavelets are a family of discrete and continuous wavelets used in the constant and discrete Hermite wavelet transforms. The




      n


      th





      {\displaystyle n^{\textrm {th}}}

      Hermitian wavelet is defined as the normalized




      n


      th





      {\displaystyle n^{\textrm {th}}}

      derivative of a Gaussian distribution for each positive



      n


      {\displaystyle n}

      :




      Ψ

      n


      (
      x
      )
      =
      (
      2
      n

      )




      n
      2





      c

      n



      He

      n




      (
      x
      )


      e




      1
      2



      x

      2




      ,


      {\displaystyle \Psi _{n}(x)=(2n)^{-{\frac {n}{2}}}c_{n}\operatorname {He} _{n}\left(x\right)e^{-{\frac {1}{2}}x^{2}},}

      where




      He

      n



      (
      x
      )


      {\displaystyle \operatorname {He} _{n}(x)}

      denotes the




      n


      th





      {\displaystyle n^{\textrm {th}}}

      probabilist's Hermite polynomial. Each normalization coefficient




      c

      n




      {\displaystyle c_{n}}

      is given by




      c

      n


      =


      (


      n



      1
      2



      n


      Γ

      (

      n
      +


      1
      2



      )


      )





      1
      2




      =


      (


      n



      1
      2



      n




      π



      2


      n


      (
      2
      n

      1
      )
      !
      !

      )





      1
      2





      n


      N

      .


      {\displaystyle c_{n}=\left(n^{{\frac {1}{2}}-n}\Gamma \left(n+{\frac {1}{2}}\right)\right)^{-{\frac {1}{2}}}=\left(n^{{\frac {1}{2}}-n}{\sqrt {\pi }}2^{-n}(2n-1)!!\right)^{-{\frac {1}{2}}}\quad n\in \mathbb {N} .}

      The function



      Ψ


      L

      ρ
      ,
      μ


      (


      ,

      )


      {\displaystyle \Psi \in L_{\rho ,\mu }(-\infty ,\infty )}

      is said to be an admissible Hermite wavelet if it satisfies the admissibility condition:





      C

      Ψ


      =



      n
      =
      0












      Ψ
      ^



      (
      n
      )



      2





      n




      <



      {\displaystyle C_{\Psi }=\sum _{n=0}^{\infty }{\frac {\|{\hat {\Psi }}(n)\|^{2}}{\|n\|}}<\infty }


      where






      Ψ
      ^



      (
      n
      )


      {\displaystyle {\hat {\Psi }}(n)}

      are the terms of the Hermite transform of



      Ψ


      {\displaystyle \Psi }

      .
      In computer vision and image processing, Gaussian derivative operators of different orders are frequently used as a basis for expressing various types of visual operations; see scale space and N-jet.


      Examples


      The first three derivatives of the Gaussian function with



      μ
      =
      0
      ,

      σ
      =
      1


      {\displaystyle \mu =0,\;\sigma =1}

      :



      f
      (
      t
      )
      =

      π


      1

      /

      4



      e

      (


      t

      2



      /

      2
      )


      ,


      {\displaystyle f(t)=\pi ^{-1/4}e^{(-t^{2}/2)},}

      are:








      f


      (
      t
      )



      =


      π


      1

      /

      4


      t

      e

      (


      t

      2



      /

      2
      )


      ,





      f


      (
      t
      )



      =

      π


      1

      /

      4


      (

      t

      2



      1
      )

      e

      (


      t

      2



      /

      2
      )


      ,





      f

      (
      3
      )


      (
      t
      )



      =

      π


      1

      /

      4


      (
      3
      t


      t

      3


      )

      e

      (


      t

      2



      /

      2
      )


      ,






      {\displaystyle {\begin{aligned}f'(t)&=-\pi ^{-1/4}te^{(-t^{2}/2)},\\f''(t)&=\pi ^{-1/4}(t^{2}-1)e^{(-t^{2}/2)},\\f^{(3)}(t)&=\pi ^{-1/4}(3t-t^{3})e^{(-t^{2}/2)},\end{aligned}}}

      and their




      L

      2




      {\displaystyle L^{2}}

      norms





      f



      =


      2



      /

      2
      ,


      f



      =


      3



      /

      2
      ,


      f

      (
      3
      )



      =


      30



      /

      4


      {\displaystyle \lVert f'\rVert ={\sqrt {2}}/2,\lVert f''\rVert ={\sqrt {3}}/2,\lVert f^{(3)}\rVert ={\sqrt {30}}/4}

      .
      Normalizing the derivatives yields three Hermitian wavelets:








      Ψ

      1


      (
      t
      )



      =


      2



      π


      1

      /

      4


      t

      e

      (


      t

      2



      /

      2
      )


      ,





      Ψ

      2


      (
      t
      )



      =


      2
      3




      3



      π


      1

      /

      4


      (
      1


      t

      2


      )

      e

      (


      t

      2



      /

      2
      )


      ,





      Ψ

      3


      (
      t
      )



      =


      2
      15




      30



      π


      1

      /

      4


      (

      t

      3



      3
      t
      )

      e

      (


      t

      2



      /

      2
      )


      .






      {\displaystyle {\begin{aligned}\Psi _{1}(t)&={\sqrt {2}}\pi ^{-1/4}te^{(-t^{2}/2)},\\\Psi _{2}(t)&={\frac {2}{3}}{\sqrt {3}}\pi ^{-1/4}(1-t^{2})e^{(-t^{2}/2)},\\\Psi _{3}(t)&={\frac {2}{15}}{\sqrt {30}}\pi ^{-1/4}(t^{3}-3t)e^{(-t^{2}/2)}.\end{aligned}}}



      See also


      Wavelet
      The Ricker wavelet is the



      n
      =
      2


      {\displaystyle n=2}

      Hermitian wavelet


      References




      External links


      Hermitian Clifford–Hermite Wavelets (Department of Mathematical Analysis, Faculty of Engineering, Ghent University)

    Kata Kunci Pencarian: