- Source: Johansen test
In statistics, the Johansen test, named after Søren Johansen, is a procedure for testing cointegration of several, say k, I(1) time series. This test permits more than one cointegrating relationship so is more generally applicable than the Engle-Granger test which is based on the Dickey–Fuller (or the augmented) test for unit roots in the residuals from a single (estimated) cointegrating relationship.
There are two types of Johansen test, either with trace or with eigenvalue, and the inferences might be a little bit different. The null hypothesis for the trace test is that the number of cointegration vectors is r = r* < k, vs. the alternative that r = k. Testing proceeds sequentially for r* = 1,2, etc. and the first non-rejection of the null is taken as an estimate of r. The null hypothesis for the "maximum eigenvalue" test is as for the trace test but the alternative is r = r* + 1 and, again, testing proceeds sequentially for r* = 1,2,etc., with the first non-rejection used as an estimator for r.
Just like a unit root test, there can be a constant term, a trend term, both, or neither in the model. For a general VAR(p) model:
X
t
=
μ
+
Φ
D
t
+
Π
p
X
t
−
p
+
⋯
+
Π
1
X
t
−
1
+
e
t
,
t
=
1
,
…
,
T
{\displaystyle X_{t}=\mu +\Phi D_{t}+\Pi _{p}X_{t-p}+\cdots +\Pi _{1}X_{t-1}+e_{t},\quad t=1,\dots ,T}
There are two possible specifications for error correction: that is, two vector error correction models (VECM):
1. The longrun VECM:
Δ
X
t
=
μ
+
Φ
D
t
+
Π
X
t
−
p
+
Γ
p
−
1
Δ
X
t
−
p
+
1
+
⋯
+
Γ
1
Δ
X
t
−
1
+
ε
t
,
t
=
1
,
…
,
T
{\displaystyle \Delta X_{t}=\mu +\Phi D_{t}+\Pi X_{t-p}+\Gamma _{p-1}\Delta X_{t-p+1}+\cdots +\Gamma _{1}\Delta X_{t-1}+\varepsilon _{t},\quad t=1,\dots ,T}
where
Γ
i
=
Π
1
+
⋯
+
Π
i
−
I
,
i
=
1
,
…
,
p
−
1.
{\displaystyle \Gamma _{i}=\Pi _{1}+\cdots +\Pi _{i}-I,\quad i=1,\dots ,p-1.\,}
2. The transitory VECM:
Δ
X
t
=
μ
+
Φ
D
t
+
Π
X
t
−
1
−
∑
j
=
1
p
−
1
Γ
j
Δ
X
t
−
j
+
ε
t
,
t
=
1
,
⋯
,
T
{\displaystyle \Delta X_{t}=\mu +\Phi D_{t}+\Pi X_{t-1}-\sum _{j=1}^{p-1}\Gamma _{j}\Delta X_{t-j}+\varepsilon _{t},\quad t=1,\cdots ,T}
where
Γ
i
=
(
Π
i
+
1
+
⋯
+
Π
p
)
,
i
=
1
,
…
,
p
−
1.
{\displaystyle \Gamma _{i}=\left(\Pi _{i+1}+\cdots +\Pi _{p}\right),\quad i=1,\dots ,p-1.\,}
The two are the same. In both VECM,
Π
=
Π
1
+
⋯
+
Π
p
−
I
.
{\displaystyle \Pi =\Pi _{1}+\cdots +\Pi _{p}-I.\,}
Inferences are drawn on Π, and they will be the same, so is the explanatory power.
References
Further reading
Banerjee, Anindya; et al. (1993). Co-Integration, Error Correction, and the Econometric Analysis of Non-Stationary Data. New York: Oxford University Press. pp. 266–268. ISBN 0-19-828810-7.
Favero, Carlo A. (2001). Applied Macroeconometrics. New York: Oxford University Press. pp. 56–71. ISBN 0-19-829685-1.
Hatanaka, Michio (1996). Time-Series-Based Econometrics: Unit Roots and Cointegration. New York: Oxford University Press. pp. 219–246. ISBN 0-19-877353-6.
Maddala, G. S.; Kim, In-Moo (1998). Unit Roots, Cointegration, and Structural Change. Cambridge University Press. pp. 198–248. ISBN 0-521-58782-4.
Kata Kunci Pencarian:
- Statistika
- Ilmu aktuaria
- Statistika matematika
- Daftar peraih medali pada Olimpiade Musim Panas 2020
- Vaksin influenza
- Variabel acak
- Model generatif
- Efek pengacau
- Eksperimen semu
- Balsam Peru
- Johansen test
- Cointegration
- Likelihood-ratio test
- Pairs trade
- List of statistics articles
- Error correction model
- A/B testing
- Chi-squared test
- Student's t-test
- Graphics Turing test