Kabin bertekanan digunakan dalam penerbangan dengan memompa udara
bertekanan ke
Kabin pesawat terbang. Hal tersebut bertujuan untuk menjaga kondisi lingkungan dalam
Kabin pesawat dan memberi kenyamanan bagi kru pesawat serta penumpang saat terbang di ketinggian.
Kabin bertekanan adalah hal penting pada ketinggian di atas 10.000 kaki (3.000 m) di atas permukaan laut. Tujuannya antara lain :
Melindungi kru pesawat dan penumpang dari risiko beberapa masalah psikologis yang diakibatkan oleh tekanan udara rendah pada ketinggian.
Meningkatkan kenyamanan penumpang.
Masalah psikologis utama yang dihadapi dalam tekanan udara rendah pada ketinggian adalah sebagai berikut:
Hypoksia
Mabuk ketinggian
Mabuk pengurangan tekanan
Barotrauma
Udara
bertekanan juga dibutuhkan di dalam ruang kargo untuk mencegah kerusakan pada barang yang sensitif terhadap tekanan. Perbedaan tekanan udara dapat mengakibatkan barang tersebut bocor, melar, meledak, atau hancur.
Ketinggian Kabin
Tekanan dalam
Kabin, secara teknis disebut sebagai setara efektif ketinggian
Kabin (equivalent effective cabin altitude) atau biasa disebut cabin altitude saja, adalah tekanan udara yang biasa diusahakan dalam sebuah pesawat yang terbang. Pesawat yang sedang terbang dengan ketinggian 40.000 kaki (12.000 m), tekanan di dalam
Kabin tidak akan disamakan dengan tekanan saat berada di darat dengan alasan untuk menjaga badan pesawat dari batas tekanan yang diizinkan. Selain itu juga untuk memudahkan penyesuaian bila pesawat akan mendarat pada ketinggian di atas permukaan laut. Biasanya, tekanan dalam
Kabin dijaga untuk setara dengan tekanan di ketinggian 8.000 kaki (2.400 m).
Ketinggian
Kabin yang umum, seperti pada Boeing 767, dijaga pada ketinggian 6.900 kaki (2.100 m) ketika terbang pada ketinggian 39.000 kaki (12.000 m). Kecenderungan untuk pesawat pesawat baru adalah membuat tekanan
Kabin lebih rendah, Airbus A380
bertekanan setara 5.000 ft (1.500 m) ketika terbang pada ketinggian 43.000 kaki (13.000 m), sedangkan tekanan
Kabin terendah saat ini adalah Bombardier Global Express yang
bertekanan setara 4.500 ft (1.400 m) ketika terbang pada ketinggian 41.000 kaki (12.000 m). Menjaga tekanan
Kabin di bawah 8.000 ft (2.400 m) secara umum akan menghindari hypoksia, mabuk udara, demam pengurangan tekanan, dan barotrauma.
Cara kerja penekanan Kabin
Tekanan dicapai dengan mendesain
Kabin kedap udara dan memompakan udara ke dalamnya dengan kompresor sehingga tekanan udara dalam
Kabin akan bertambah. Untuk mengatur tekanan di dalam
Kabin maka diperlukan alat sistem pengontrol lingungan atau Environmental control system (ECS) yang melibatkan keran pelepas tekanan dan berbagai sensor yang diatur secara elektronis.
Pengurangan tekanan yang tidak terencana
Kehilangan tekanan dalam
Kabin secara tidak sengaja adalah hal yang jarang terjadi, tetapi bila terjadi bisa mengakibatkan kecelakaan fatal.
Setiap kegagalan pada tekanan
Kabin saat terbang di atas 10.000 kaki (3.000 m) diharuskan penurunan ketinggian secara darurat ke ketinggian 8.000 kaki (2.400 m) atau ketinggian terdekat yang diperbolehkan untuk tetap pada ketinggian yang aman (MSA), dan pengaktifan topeng oksigen untuk setiap kursi. Sistem oksigen mempunyai oksigen yang cukup untuk semua orang dipesawat dan memberi cukup waktu bagi pilot untuk turun ke ketinggian di bawah 8.000 ft (2.400 m). Tanpa oksigen darurat, Hypoksia akan mengakibatkan kehilangan kesadaran dan kehilangan kendali pesawat. Pada saat tekanan udara turun, suhu dalam
Kabin kemungkinan juga akan turun mengikuti suhu di luar pesawat dan menghadapkan orang di dalam pesawat dengan risiko bahaya hypothermia atau membeku.
Pesawat yang mengawali
Kabin bertekanan adalah:
USD-9A, sebuah Airco DH.9A yang dimodifikasi (1921 - pesawat pertama yang terbang dengan tambahan modul kokpit
bertekanan)
Junkers Ju 49 (1931 - pesawat percobaan jerman utk menguji konsep dari
Kabin bertekanan)
Lockheed XC-35 (1937 - pesawat
bertekanan amerika utk menguji konsep dari
Kabin bertekanan)
Boeing 307 (1938 - pesawat penumpang piston pertama
bertekanan)
Lockheed Constellation (1943 - pesawat penumpang pertama yang operasional)
Avro Tudor (1946 - pesawat penumpang pertama Inggris yang
bertekanan )
de Havilland Comet (Inggris, Comet 1 1949 - pesawat penumpang jet pertama, Comet 4 1958 - memecahkan masalah Comet 1)
Tupolev Tu-144 dan Concorde (Uni Sovyet 1968 dan Anglo-French 1969 - pertama yang operasi di ketinggian sangat tinggi / very high altitude)
Lihat juga
Atmosfere (unit)
Udara
bertekanan
Rarefaction
Pakaian angkasa
Sindrom racun udara
Catatan
Catatan kaki
Referensi umum
Seymour L. Chapin (1966). "Garrett and Pressurized Flight: A Business Built on Thin Air". Pacific Historical Review. 35: 329–43.
Seymour L. Chapin (1971). "Patent Interferences and the History of Technology: A High-flying Example". Technology and Culture. 12 (3): 414–46. doi:10.2307/3102997. JSTOR 3102997.
Cornelisse, Diana G. Splended Vision, Unswerving Purpose; Developing Air Power for the United States Air Force During the First Century of Powered Flight. Wright-Patterson Air Force Base, Ohio: U.S. Air Force Publications, 2002. ISBN 0-16-067599-5. pp. 128–129.
Portions from the United States Naval Flight Surgeon's Manual Diarsipkan 2004-12-16 di Wayback Machine.
CNN: 121 Dead in Greek Air Crash
"Explosive Decompression" segment of MythBusters episode 10, January 11, 2004
also shown as a segment of Beyond Tomorrow episode 12