- Source: Metabolisme
Metabolisme (bahasa Yunani: μεταβολισμος, metabolismos, 'perubahan') adalah seluruh reaksi biokimia yang bertujuan untuk mempertahankan kehidupan pada suatu organisme. Proses ini memungkinkan organisme untuk tumbuh, bereproduksi, mempertahankan struktur, dan merespons lingkungannya. Metabolisme juga dapat diartikan sebagai semua reaksi kimia yang terjadi pada organisme hidup, di antaranya pencernaan dan perpindahan zat di dalam sel dan di antara sel yang berbeda. Di dalam sel, reaksi kimia terjadi secara berantai sehingga produk yang dihasilkan oleh suatu reaksi akan memasuki reaksi lain. Reaksi-reaksi yang saling terhubung ini disebut metabolisme perantara atau metabolisme intermediat dan setiap reaksinya dikatalisis oleh enzim.
Secara umum, metabolisme memiliki dua arah lintasan reaksi kimia organik, yaitu katabolisme (reaksi untuk menghasilkan energi dengan cara mengurai senyawa organik), seperti pemecahan glukosa menjadi asam piruvat oleh proses respirasi seluler dan anabolisme (reaksi yang memerlukan energi untuk menyusun [sintesis] senyawa organik seperti protein, karbohidrat, lipid, dan asam nukleat dari molekul-molekul yang diperlukan). Tiga tujuan utama metabolisme yaitu mengonversi makanan menjadi energi untuk menjalankan proses pada tingkat seluler, mengonversi makanan menjadi bahan baku penyusun protein, lipid, asam nukleat, dan beberapa jenis karbohidrat, serta mengeliminasi zat sisa metabolisme.
Reaksi kimia pada proses metabolisme terbagi atas beberapa lintasan metabolik yang mengubah suatu senyawa menjadi senyawa yang berbeda melalui beberapa tahapan. Tiap tahapan dalam lintasan difasilitasi dengan enzim yang bersifat spesifik. Fungsi enzim sangat penting pada metabolisme karena membantu organisme menjalankan reaksi yang dinginkan karena reaksi ini membutuhkan energi dan tidak terjadi secara otomatis. Enzim memasangkan reaksi yang difasilitasinya dengan reaksi spontan yang menghasilkan energi sehingga enzim berfungsi sebagai katalis yang mempercepat terjadinya reaksi sekaligus mengatur laju reaksi metabolik. Reaksi kimia dalam metabolisme muncul sebagai respons atas perubahan lingkungan sel atau sinyal dari sel lain.
Pada setiap proses dalam metabolisme, reaksi kimia juga melibatkan sejumlah substrat yang bereaksi dengan enzim sebagai katalis pada jenjang-jenjang reaksi guna menghasilkan senyawa intermediat, yang menjadi substrat pada jenjang reaksi berikutnya. Keseluruhan pereaksi kimia yang terlibat pada suatu jenjang reaksi disebut metabolom. Semua ini dipelajari pada suatu cabang ilmu biologi yang disebut metabolomika. Laju metabolisme basal suatu organisme adalah ukuran jumlah energi yang dikonsumsi oleh semua reaksi kimia yang terjadi.
Sistem metabolisme suatu organisme menentukan senyawa mana yang merupakan nutrisi dan senyawa mana yang beracun bagi tubuh. Sebagai contoh, beberapa jenis prokariota memakai hidrogen sulfida sebagai nutrien walaupun gas ini bersifat racun bagi hewan. Namun, terdapat ciri khusus dari metabolisme yang umumnya ditemukan pada hampir seluruh spesies yang berbeda, seperti gugus asam karboksilat yang diketahui merupakan sebagai zat antara pada siklus asam sitrat pada semua organisme yang diketahui manusia. Senyawa ini juga ditemukan pada spesies yang sangat berbeda struktur biologisnya, seperti bakteri uniseluler Eschirichia coli dan organisme multiseluler berukuran besar seperti gajah. Kesamaan yang terdapat pada lintasan metabolisme ini mungkin terjadi akibat keberadaan senyawa-senyawa tersebut pada awal sejarah evolusi dan retensi kemunculan mereka yang tinggi pada beragam jenis hewan karena efikasi yang ditimbulkan. Metabolisme sel kanker sangat berbeda dengan sel normal dan perbedaanya ini dapat digunakan sebagai intervensi terapeutik pada penyakit kanker.
Sejarah
= Etimologi
=Terminologi metabolisme diturunkan dari bahasa Prancis "métabolisme" atau bahasa Yunani Kuno μεταβολή – "Metabole" yang dialihbahasakan menjadi "sebuah perubahan" yang diturunkan dari kata μεταβάλλ – "Metaballein" yang dialihbahasakan menjadi "untuk mengubah".
= Filsafat Yunani
=Buku karya dari Aristoteles berjudul De Partibus Animalium menjelaskan cukup detail tentang pandangannya terhadap metabolisme yang digambarkan dengan sebuah model diagram alir terbuka. Dia mempercayai bahwa pada setiap langkah di dalam proses saat materi dari makanan ditransformasikan, panas keluar sebagai elemen klasik dari api dan materi residu dieksresikan sebagai urine, empedu, atau tinja.
= Ilmu kedokteran oleh ilmuwan Islam
=Ibnu al-Nafis menjelaskan metabolisme pada abad ke-13 dengan menyatakan, "Baik tubuh dan bagian-bagiannya berada dalam kondisi penguraian dan pemberian nutrisi secara berkesinambungan sehingga mereka mengalami perubahan permanen yang tidak dapat dihindari."
= Eksperimen awal
=Eksperimen terkontrol terhadap metabolisme pada manusia pertama kali diterbitkan oleh Santorio Santorio pada tahun 1614 di dalam bukunya, Ars de statica medecina yang membuatnya terkenal di Eropa. Dia mendeskripsikan rangkaian percobaan yang dilakukannya, yang melibatkan penimbangan dirinya sendiri pada sebuah kursi yang digantung pada sebuah timbangan besar (lihat gambar) sebelum dan sesudah makan, tidur, bekerja, berhubungan seksual, berpuasa makan atau minum, dan buang air besar. Dia menemukan bahwa bagian terbesar makanan yang dimakannya hilang dari tubuh melalui perspiratio insensibilis (mungkin dapat diterjemahkan sebagai "keringatan yang tidak tampak").
Pada studi awal, mekanisme proses metabolisme tidak dapat diidentifikasi dan dipercaya bahwa energi vital menggerakkan kehidupan. Pada abad ke-19, Louis Pasteur mengambil kesimpulan bahwa fermentasi mengkatalisis senyawa di dalam sel khamir yang dia sebut "fermen" ketika dia mempelajari proses fermentasi gula menjadi alkohol oleh khamir. Dia menulis bahwa "fermentasi alkohol merupakan suatu kondisi yang berkorelasi dengan kehidupan dan pengaturan oleh sel khamir, bukan kematian atau pembusukan sel tersebut". Penemuan ini selaras dengan publikasi Friedrich Wöhler pada tahun 1828 dalam karya tulisnya tentang sintesis kimiawi urea, yang dikenal sebagai senyawa organik pertama yang dipersiapkan dari prekursor anorganik lengkap. Penelitian ini membuktikan bahwa senyawa organik dan reaksi kimia yang ditemukan di dalam sel tidak berbeda secara prinsip dengan reaksi kimiawi yang berlangsung di tempat lain.
Penemuan enzim pada awal abad ke-20 oleh Eduard Buchner yang memisahkan studi reaksi kimiawi metabolisme dari studi sel biologis lain menjadi awal mula dari biokimia. Pengetahuan biokimia berkembang pesat selama awal abad ke-20. Salah satu ahli biokimia modern yang paling terkemuka ialah Hans Krebs yang memberikan kontibusi besar kepada studi metabolisme. Dia menemukan siklus urea dan kemudian bekerja sama dengan Hans Kornberg menemukan siklus asam sitrat dan siklus glioksilat. Penelitian biokimia modern telah berkembang dengan pesat setelah penemuan kromatografi pada tahun 1904, difraksi sinar-X, spektroskopi resonansi magnet inti, pelabelan isotop, mikroskop elektron, dan simulasi dinamika molekular.
Senyawa biokimia kunci
Sebagian besar struktur yang menyusun hewan, tumbuhan, dan mikroorganisme tersusun atas empat gugus molekul dasar: asam amino, karbohidrat, asam nukleat, dan lipid. Karena keempatnya sangat vital bagi kehidupan, reaksi metabolik bertujuan untuk membentuk molekul-molekul tersebut selama proses penyusunan sel dan jaringan, atau menguraikan dan menggunakan mereka untuk mendapatkan energi melalui proses pencernaan. Senyawa-senyawa biokimia ini dapat digabungkan untuk membentuk polimer seperti DNA dan protein yang merupakan makromolekul esensial bagi kehidupan.
= Asam amino dan protein
=Protein terdiri dari rangkaian asam amino yang disusun menjadi sebuah rantai yang disatukan oleh ikatan peptida. Sebagian besar protein berfungsi sebagai enzim yang dapat mengkatalisis reaksi kimia pada proses metabolisme. Protein-protein lainnya memiliki fungsi struktural atau mekanik seperti sebagai penyusun sitoskeleton, suatu sistem perancah yang berfungsi untuk mempertahankan bentuk sel. Beberapa fungsi protein yang lain di antaranya memproduksi cahaya pada kunang-kunang, membantu transpor oksigen dalam darah, serta menjadi komponen penyusun keratin. Asam amino berkontribusi dalam proses metabolisme energi seluler sebagai penyedia sumber karbon untuk memulai siklus asam sitrat, terutama ketika sumber energi utama seperti glukosa menipis atau ketika sel mengalami represi katabolit kembali, misalnya akibat stres metabolik.
= Lipid
=Lipid adalah gugus senyawa biokimia yang paling beragam. Fungsi struktural utamanya adalah sebagai bagian dari membran biologis, baik sebagai membran internal (misalnya membran pada retikulum endoplasma), membran eksternal (seperti membran sel), atau sebagai sumber energi dan tempat penyimpanan energi. Lipid didefinisikan sebagai molekul biologis yang bersifat hidrofobik atau amfifilik, tetapi dapat terlarut pada pelarut lipid, seperti eter, benzena, aseton, atau kloroform. Lipid adalah gugus besar senyawa yang mengandung asam lemak dan gliserol; gliserol yang melekat pada asam lemak ester dikenal dengan nama triasilgliserida Selain itu, terdapat banyak variasi bentuk lipid yang lain, misalnya sfingosina yang merupakan rantai utama sfingomielin dan gugus hidrofilik seperti fosfat yang ada pada fosfolipid. Steroid merupakan salah satu kelompok utama dari lipid.
= Karbohidrat
=Karbohidrat adalah senyawa aldehida dan keton dengan banyak gugus hidroksil yang menempel dalam bentuk rantai lurus atau cincin. Karbohidrat adalah molekul biologis paling berlimpah dan memiliki banyak fungsi, seperti tempat penyimpanan atau transpor energi (amilum dan glikogen) dan juga merupakan komponen penyusun dari suatu senyawa pada organisme (selulosa pada tumbuhan dan kitin pada hewan). Unit paling sederhana dari karbohidrat dikenal dengan nama monosakarida. Terdapat tiga jenis monosakarida, yaitu galaktosa, fruktosa dan senyawa yang paling penting bagi organisme, yaitu glukosa. Monosakarida akan saling terikat dengan monoskarida lain dan membentuk polisakarida dalam pelbagai bentuk yang tak terhitung jumlahnya.
= Nukleotida
=Dua jenis asam nukleat, yaitu DNA dan RNA merupakan polimer dari nukleotida. Tiap nukleotida disusun atas fosfat yang menempel pada gugus gula ribosa atau deoksiribosa yang menempel pada basa nitrogen. Asam nukleat memiliki fungsi penting sebagai media penyimpanan dan penggunaan informasi genetik yang akan dinterpretasi melalui proses transkripsi dan translasi dalam proses biosintesis protein. Informasi genetik yang terkandung di dalam asam nukleat dilindungi oleh mekanisme perbaikan DNA dan diperbanyak pada proses replikasi DNA. Banyak virus memiliki genom RNA, seperti HIV, yang menggunakan proses transkripsi balik untuk membuat templat DNA dari genom virus RNA-nya. Molekul RNA yang berada di dalam ribozim, seperti spliseosom atau ribosom, bekerja mirip dengan enzim yang mampu mengkatalisis reaksi kimia. Nukleosida adalah penyusun nukleotida yang merupakan basa nukleotida yang menempel pada gula ribosa. Basa nukleotida memiliki bentuk cincin heterosiklik yang mengandung nitrogen yang diklasifisikasikan menjadi dua macam, yaitu purina atau pirimidina. Nukleotida juga dapat berfungsi sebagai koenzim pada reaksi transfer gugus metabolis.
= Koenzim
=Metabolisme melibatkan banyak reaksi kimia, tetapi sebagian besar reaksi tersebut dikategorikan ke dalam jenis reaksi sederhana yang melibatkan perpindahan gugus fungsional suatu atom serta ikatannya di dalam suatu molekul. Kimia sederhana ini memungkinkan pengunaaan kelompok senyawa intermediat untuk membawa gugus senyawa kimia ini berpindah di antara reaksi-reaksi yang berbeda. Kelompok senyawa intermediat yang berfungsi untuk memindahkan gugus tersebut dikenal dengan nama koenzim. Tiap kelompok reaksi dikendalikan oleh suatu koenzim tertentu, yang menjadi substrat untuk kelompok enzim yang memproduksinya sekaligus enzim yang memakainya. Koenzim ini terus-menerus dibuat, dipakai, dan didaur ulang.
Salah satu koenzim utama yang ada di dalam tubuh ialah ATP (adenosina trifosfat) yang merupakan sumber energi universal di dalam sel. Jenis nukleotida ini digunakan untuk memindahkan energi kimiawi di antara reaksi-reaksi kimia yang berbeda. Hanya ada sedikit ATP di dalam tubuh, tetapi ATP terus-menerus diregenerasi sehingga tubuh manusia dapat menggunakan ATP dengan jumlah yang setara dengan berat badan tubuhnya. ATP bertindak sebagai jembatan penghubung katabolisme dan anabolisme. Katabolisme menguraikan molekul dan katabolisme menyatukannya kembali. Reaksi katabolisme menghasilkan ATP dan reaksi anabolis memakainya. ATP juga berfungsi sebagai pembawa gugus fosfat dalam reaksi fosforilasi.
Vitamin merupakan senyawa organik yang dibutuhkan dalam jumlah sedikit dan tidak dapat diproduksi oleh sel di dalam tubuh manusia. Pada nutrisi manusia, vitamin berfungsi sebagai koenzim, setelah mengalami modifikasi. Misalnya, vitamin larut air akan mengalami fosforilasi dan berpasangan dengan nukleotida ketika dipakai oleh sel. Nikotinamida adenina dinukleotida (NAD+) adalah senyawa turunan vitamin B3 (niasin) yang merupakan koenzim penting yang bertindak sebagai reseptor molekul hidrogen. Ratusan jenis enzim dehidrogenase melepas elektron dari substrat dan mereduksi NAD+ menjadi NADH. Koenzim yang telah direduksi ini kemudian menjadi substrat bagi enzim reduktase di dalam sel untuk mereduksi substrat. Nikotinamida adenina dinukleotida eksis dalam bentuk yang saling berhubungan di dalam sel, yaitu NADH dan NADPH. Bentuk NAD+/NADH lebih penting pada reaksi katabolis, sedangkan NADP+/NADPH dipakai pada reaksi anabolik.
= Mineral dan kofaktor
=Senyawa anorganik memiliki peran penting pada proses metabolisme. Beberapa senyawa berada dalam jumlah yang berlimpah (natrium dan kalium), sedangkan senyawa yang lain hanya berfungsi dalam konsentrasi yang kecil di dalam tubuh. Sekitar 99% berat badan pada manusia terdiri dari karbon, nitrogen, kalsium, natrium, kalium, klorin, hidrogen, oksigen, dan fosfor. Senyawa organik penyusun tubuh, seperti lipid, protein, dan karbohidrat mengandung sebagian besar karbon dan nitrogen sebagai salah satu penyusunnya. Sebagian besar molekul oksigen dan hidrogen berada dalam bentuk air di dalam tubuh.
Senyawa anorganik berfungsi sebagai elektrolit di dalam tubuh. Elektrolit penting dalam tubuh terdiri atas enam elektrolit, yaitu iodin, kalium, klorida, bikarbonat, fosfat, dan kalsium. Gradien konsentrasi ion yang stabil pada membran sel diperlukan untuk mempertahankan tekanan osmotik dan pH. Ion memiliki fungsi penting pada otot dan saraf sebagai potensial aksi di dalam jaringan yang dihasilkan oleh pertukaran ion antara cairan ektraseluler dan cairan di dalam sel, yaitu sitosol. Elektrolit keluar masuk melalui protein di dalam membran sel yang disebut saluran ion. Contohnya, yaitu pada proses kontraksi otot yang ditentukan oleh perpindahan kalsium, iodin, dan kalium melalui saluran ion di dalam membran sel dan tubulus T
Logam transisi biasanya terdapat dalam bentuk unsur kelumit di dalam organisme. Seng dan besi adalah unsur paling berlimpah dari kategori tersebut. Logam-logam ini berfungsi sebagai kofaktor pada beberapa jenis protein yang bersifat esensial untuk aktivitas enzim katalase dan protein pembawa protein, yaitu hemoglobin. Kofaktor logam terikat dengan situs spesifik di dalam protein, meskipun akan berubah seiring proses katalisis. Zat ini akan kembali menjadi bentuk semula pada akhir reaksi katalisis. Mikronutrien logam masuk ke dalam organisme dengan menggunakan transporter spesifik dan terikat dengan protein penyimpanan, seperti feritin dan metalotionein ketika tidak digunakan.
Katabolisme
Katabolisme adalah serangkaian reaksi pada proses metabolisme yang menguraikan molekul-molekul besar. Reaksi-reaksi yang dimaksud ialah mengurai dan mengoksidasi molekul makanan. Tujuan dari reaksi katabolik adalah untuk menyediakan energi dan komponen yang dibutuhkan oleh reaksi anabolik untuk rangka menyusun molekul. Keadaan alamiah suatu reaksi katabolis berbeda-beda tergantung organismenya. Organisme-organisme tersebut dapat diklasifikasikan berdasarkan sumber energi dan karbon (pengelompokan sumber nutrisi primer) yang dapat dilihat pada tabel dibawah. Molekul organik digunakan sebagai sumber energi oleh kelompok organotrof, sedangkan litotrof menggunakan molekul anorganik sebagai substratnya. Fototrof menangkap sinar matahari sebagai sumber energi kimiawi. Walaupun begitu, seluruh bentuk reaksi metabolisme yang berbeda bergantung pada reaksi redoks yang melibatkan transfer elektron dari donor molekul yang telah tereduksi, seperti molekul organik, air, amonia, hidrogen sulfida atau ion fero terhadap molekul aseptor, yaitu oksigen, nitrat, atau sulfat.
Klasifikasi organisme berdasarkan metabolismenya
Pada umumnya, reaksi katabolis pada hewan dapat dibedakan menjadi tiga tahap utama. Pertama, makromolekul seperti protein, polisakarida, dan lipid dicerna menjadi komponen yang lebih kecil di luar sel. Selanjutnya, molekul-molekul kecil ini diambil oleh sel untuk dikonversi menjadi molekul yang lebih kecil lagi yang biasanya dalam bentuk asetil koenzim A (Asetil-KoA) yang menghasilkan energi. Akhirnya, gugus asetil pada KoA dioksidasi oleh air dan karbondioksida melalui proses siklus asam sitrat dan rantai transpor elektron yang menghasilkan energi yang telah tersimpan dengan cara mereduksi nikotinamida adenina dinukleotida (NAD+) menjadi NADH.
= Pencernaan
=Makromolekul, seperti pati, selulosa atau protein tidak dapat langung masuk ke dalam sel sehingga harus diurai menjadi ukuran lebih kecil untuk dapat digunakan dalam reaksi metabolisme di dalam sel. Beberapa kelompok enzim berbeda berfungsi mencerna polimer-polimer tersebut. Enzim-enzim pencernaan tersebut ialah protease yang mencerna protein menjadi asam amino , sekaligus kelompok enzim glikosida hidrolase yang mencerna polisakarida menjadi gula yang lebih sederhana, yaitu monosakarida.
Mikroorganisme menghasilkan enzim pencernaan ke sekelilingnya, sedangkan hewan menghasilkan enzim dari sel spesifik di dalam usus, termasuk di antaranya lambung dan pankreas serta kelenjar saliva. Asam amino dikeluarkan oleh enzim ekstraseluler, lalu dipompa ke dalam sel oleh protein transpor aktif.
= Katabolisme karbohidrat
=Glikolisis
Glikolisis adalah proses metabolisme yang mengubah glukosa menjadi piruvat, menghasilkan dua mol ATP, dua mol NADH, dan dua mol asam piruvat per mol glukosa. Glikolisis dimulai dengan pengambilan glukosa ekstraseluler dan pengolahan glukosa intraseluler berikutnya dalam sitosol untuk akhirnya menghasilkan piruvat bersama dengan berbagai produk lainnya yang akan dikonversi menjadi ATP sebagai sumber energi. Asam piruvat merupakan senyawa intermediat pada beberapa lintasan metabolis. Mayoritasnya dipakai dalam keadaan aerobik untuk dikonversi menjadi asetil-KoA dalam proses glikolisis yang selanjutkan dipakai dalam siklus asam sitrat. Meskipun sebagian besar ATP dihasilkan dari siklus asam sitrat tetapi NADH merupakan produk terpenting. NADH diproduksi melalui oksidasi asetil-Koa menggunakan bahan baku NAD+Proses oksidasi ini mengeluarkan karbondioksida sebagai zat sisanya. Dalam kondisi anaerobik, piruvat direduksi menjadi laktat oleh laktat dehidrogenase. Dengan adanya oksigen, mitokondria dapat sepenuhnya mengoksidasi piruvat dan NADH dari glikolisis, menghasilkan hingga 36 mol ATP per mol glukosa menggunakan fosforilasi oksidatif.
Lintasan pentosa fosfat
Lintasan pentosa fosfat atau lintasan fosfoglukonat adalah lintasan alternatif penguraian glukosa yang terjadi di sitosol dan menyediakan beberapa tujuan utama yang mendukung proliferasi dan kelangsungan hidup sel. Pertama, dan yang paling terkenal, lintasan pentosa fosfat memungkinkan pengalihan senyawa antara dari lintasan glikolitik menuju produksi prekursor nukleotida dan asam amino yang diperlukan untuk pertumbuhan dan proliferasi sel. lintasan ini melibatkan cabang nonoksidatif dari lintasan pentosa fosfat. Fungsi kunci kedua dari lintasan pentosa fosfat yaitu menghasilkan reduksi ekuivalen NADPH, yang memiliki peran penting dalam pemeliharaan lingkungan redoks seluler yang menguntungkan dan juga diperlukan untuk sintesis asam lemak. lintasan ini melibatkan cabang oksidatif dari cabang pentosa fosfat.
Glikogenolisis
Glikogen adalah bentuk penyimpanan polimer dari senyawa glukosa. Glikogenolisis yaitu proses pemecahan glikogen yang terjadi di sel otot dan sel hati dalam merespons hormon epinefrin dan glukagon. Pada kondisi kelaparan atau bahaya, tubuh membutuhkan glukosa dalam jumlah yang tinggi. Kondisi ini menyebabkan sel alfa pankreas akan merilis glukagon, sementara itu kelenjar adrenal akan merilis epinefrin. Di dalam hati, glukagon dan epinefrin berikatan pada GPCR yang berbeda, namun keduanya berinteraksi dan mengaktifkan subunit protein alfa Gs yang sama. Karena itu, kedua hormon menghasilkan respons metabolisme yang sama, yaitu aktivasi adenilat siklase dan peningkatan level cAMP.
Glikogenolisis melibatkan proses pembuangan residu glukosa dari satu ujung polimer dengan reaksi fosforolisis, yang dikatalisis oleh glikogen fosforilase (GP) untuk menghasilkan glukosa-1-fosfat. Glukosa-1-fosfat selanjutnya dikonversi menjadi glukosa-6-fosfat. Proses ini terjadi baik di sel otot maupun sel hati. Pada sel otot, glukosa-6-fosfat masuk ke dalam siklus glikolisis dan dimetabolisme mejadi ATP yang digunakan untuk kontraksi otot. Sedangkan di sel hati, glukosa-6-fosfat diubah menjadi glukosa. Kondisi ini disebabkan oleh enzim bernama fosfatase yang ada di sel hati. Enzim ini mampu menghidrolisis glukosa-6-fosfat menjadi glukosa sehingga di hati, penyimpanan glikogen diuraikan menjadi glukosa, lalu dengan cepat dikeluarkan ke darah, lalu disebar ke jaringan lain, seperti otot dan otak, untuk memberi makan sel-sel tersebut.
Kinase protein A (PKA) aktif mendorong konversi glikogen menjadi glukosa-1-fosfat melalui dua cara yaitu menghambat sintesis glikogen dan menstimulasi degradasi glikogen. Untuk cara pertama, PKA memfosforilasi enzim penting dalam sintesis glikogen yaitu glikogen sintase (GS), di mana jika enzim ini difosforilasi (diberi fosfat) membuat enzim tidak aktif. Untuk cara kedua, PKA memfosforilasi enzim perantara penting, yaitu glikogen fosforilase kinase (GPK). Bedanya dengan enzim GS, fosforilasi justru membuat GPK aktif. GPK yang aktif ini kemudian memfosforilasi enzim berikutnya yaitu glikogen fosforilase (GP) pada residu serin14 yang selanjutnya memecah glikogen menjadi glukosa-1-fosfat.
= Katabolisme lipid
=Oksidasi asam lemak
Lintasan oksidasi asam lemak memungkinkan konversi asam lemak yang ada di mitokondria menjadi banyak produk yang selanjutnya dapat digunakan sel untuk menghasilkan energi, termasuk asetil-KoA, NADH dan FADH2. Langkah awal oksidasi asam lemak adalah 'aktivasi' asam lemak dalam sitosol melalui reaksi yang diperantarai enzim dengan ATP untuk akhirnya menghasilkan asam lemak asil-KoA. Mekanisme oksidasi asam lemak selanjutnya tergantung pada panjang ekor alifatik dalam asam lemak.
Asam lemak rantai pendek, yang didefinisikan memiliki kurang dari enam karbon di ekor alifatik bisa berdifusi masuk ke mitokondria secara pasif. Pertama-tama, asam lemak rantai panjang dan sedang harus dalam kondisi terkonjugasi ke karnitina melalui karnitina palmitoiltransferase I (CPT1). Setelah ini, asam lemak rantai panjang terkonjugasi karnitina kemudian dipindahkan ke mitokondria di mana ia diubah kembali menjadi asam lemak asil-KoA melalui penghilangan karnitina oleh karnitina palmitoil transferase II (CPT2). Pada tahap ini, β-oksidasi asam lemak asil-CoA dimulai, menghasilkan sejumlah besar asetil-KoA, NADH dan FADH2 yang selanjutnya digunakan dalam siklus TCA dan rantai transpor elektron untuk menghasilkan ATP.
CPT1 A bertindak sebagai langkah regulator utama dalam reaksi oksidasi asam lemak, karena membatasi laju yang dihambat oleh zat intermediat sintesis lipid malonil-KoA, sehingga mencegah reaksi oksidasi lipid ketika sel secara aktif mensintesis lipid. Secara keseluruhan, oksidasi asam lemak dapat memungkinkan produksi ATP dalam jumlah yang luar biasa. Reaksi oksidasi β lengkap dari molekul palmitat tunggal (asam lemak utama dalam sel mamalia) yang memiliki potensi untuk menghasilkan lebih dari 100 molekul ATP.
Pemecahan kolesterol
Pada orang dewasa, banyak jaringan mampu menyintesis kolesterol. Produk hewani merupakan sumber kolesterol, sedangkan tumbuhan tidak memiliki kolesterol. Namun, membran pada sel tumbuhan mengandung fitosterol, yang secara struktural mirip dengan kolesterol dan berguna dalam pengobatan diet hiperkolesterolemia karena mereka berkompetisi saat penyerapan kolesterol. Hati dan usus merupakan situs kuantitatif yang paling penting untuk metabolisme kolesterol pada manusia, meskipun sejumlah kecil kolesterol juga hilang melalui siklus pergantian kulit.
= Katabolisme asam amino
=Metabolisme asam amino memiliki beberapa peran penting dalam beberapa aspek biologis pada sel. Bermacam-macam jenis asam amino berperan dalam lintasan metabolis yang beragam yang menggunakannya sebagai substrat. Asam amino digunakan dalam proses sintesis protein dan biomolekul lainnya atau dioksidasi menjadi urea dan karbondioksida sebagai sumber energi. Glutamina dapat berperan aktif dalam proliferasi sel sebagai sumber alternatif pada siklus asam sitrat yang berfungsi untuk mendukung produksi ATP atau sumber sitrat pada reaksi sintesis asam lemak. Asam amino lainnya, seperti arginina dan triptofan dimetabolisasi melalu lintasan yang berbeda untuk mendukung proliferasi sel dan pertumbuhan anabolis.
lintasan oksidasi gugus asam amino dimulai dengan melepaskan gugus amina oleh enzim transaminase. Gugus amina masuk ke dalam siklus urea yang meninggalkan rangka karbon yang telah dideaminasi dalam bentuk asam keto. Beberapa asam keto menjadi intermediat di dalam siklus asam sitrat, seperti deaminasi glutamat menjadi bentuk alfa-ketoglutarat. Asam amino glukogenik dapat dikonversi menjadi glukosa dalam proses glukoneogenesis.
Transformasi energi
= Fosforilasi oksidatif
=Pada reaksi fosforilasi oksidatif, elektron dilepas dari molekul organik seperti NADH dan FADH2, lalu dipindahkan ke oksigen dan energi yang dihasilkan akan digunakan untuk membuat ATP. Reaksi ini berlangsung pada eukariota melalui protein berantai di dalam membran di mitokondria yang disebut dengan nama rantai transpor elektron, sedangkan pada prokariota, protein-protein ini ditemukan pada membran dalam. Protein-protein ini menggunakan energi yang dikeluarkan dari elektron yang lewat yang
berasal dari molekul yang tereduksi, seperti NADH ke dalam oksigen untuk memompa proton melewati membran.
Proton yang dipompa keluar dari mitokondria menciptakan perbedaan konsentrasi melewati membran yang menghasilkan gaya gerak proton. Gaya ini menggerakkan proton kembali ke dalam mitokondria melalui basa sebuah enzim yang disebut dengan ATP Sintase. Aliran proton membuat tangkai subunit berotasi sehingga menyebabkan situs aktif domain sintase berubah bentuk dan memosforilasi adenosina difosfat menjadi ATP
= Energi dari senyawa anorganik
=Kemolitotrof adalah jenis metabolisme yang ditemukan pada prokariota yang menggunakan energi yang didapatkan dari proses oksidasi senyawa anorganik. Organisme ini dapat menggunakan hidrogen, senyawa belerang yang tereduksi (sulfida, hidrogen sulfida dan tiosulfat), besi (II) oksida atau amoniak sebagai sumber energi dengan mengoksidasi senyawa tersebut dengan elektron aseptor, seperti oksigen atau nitrit. Proses mikrobial ini penting bagi daur biogeokimia , seperti asetogenesis, nitrifikasi dan denitrifikasi sekaligus berfungsi penting untuk kesuburan tanah
= Energi dari cahaya
=Energi yang berasal dari sinar matahari ditangkap oleh tumbuhan, sianobakteri, bakteri ungu,chlorobi dan beberapa jenis protista. Proses ini dipasangkan dengan konversi karbondioksida menjadi senyawa organik sebagai bagian proses fotosintesis. Penangkapan energi dan fiksasi karbon bisa beroperasi secara terpisah pada prokariota , sedangkan bakteri ungu fdan chlorobi bisa menggunakan sinar matahari sebagai sumber energi , ketika menukar reaksi di antara reaksi fiksasi karbon atau fermentasi senyawa organik.
Pada banyak organisme, penangkapan energi sinar matahari memilik prinsip yang sama dengan fosforilasi oksidatif yang melibatkan penyimpanan energi sebagai gradien konsentrasi proton. Gaya gerak proton ini lah yang akan menggerakan sintesis ATP.Elektron yang dibutuhkan untuk menggerakan rantai transpor elektron berasal dari protein yang mengumpulkan cahaya yang disebut pusat reaksi fotosintesis. Kelompok pusat reaksi ini dibagi menjadi dua tipe tergantung sifat pigmen fotosintesisnya di mana bakteri hanya memiliki satu tipe, sedangkan tumbuhan dan sianobakteri punya dua
Pada tumbuhan, alga, dan sianobakteri, fotosistem II menggunakan energi cahaya untuk melepaskan elektron dari molekul air dan melepaskan oksigen sebagai zat sisa. Lalu, elektron masuk ke dalam kompleks sitokrom b6f yang menggunakan energi tersebut untuk memompa proten melewati membran tilakoid yang ada di dalam membran kloroplas. . Proton ini kembali melalui membran untuk menggerakan ATP sintase seperti sebelumnya.Elektron masuk melalui fotosistem I dan bisa juga digunakan untuk mereduksi koenzim NADP+ Koenzim ini dapat digunakan di dalam siklus Calvin atau didaur ulang untuk menghasilkan ATP selanjutnya.
Anabolisme
Anabolisme adalah sekelompok proses reaksi metabolis yang menggunakan energi yang dihasilkan dari proses katabolisme untuk menyintesis molekul kompleks. Pada umumnya, molekul kompleks terdiri dari struktur seluler yang disusun secara bertahap dari prekursor yang kecil dan sederhana. Anabolisme melibatkan tiga tahap dasar. Pertama, sintesis prekursor, seperti asam amino, monosakarida dan isoprenoid, dan nukleotida. Tahap kedua ialah aktivasi bentuk reaktif menggunakan energi yang berasal dari ATP. Tahap ketiga ialah penyusunan prekursor menjadi molekul yang lebih kompleks, seperti protein, polisakarida , lipid, dan asam nukleat.
Anabolism di dalam organisme dapat berbeda tergantung bahan baku konstruksi molekul yang terjadi di dalam sel organisme tersebut. Autotrof seperti tanaman dapat menyusun molekul organik kompleks di dalam sel seperti polisakarida dan protein hanya dari molekul sederhana seperti karbondioksida dan air. Sedangkan, Heterotrof membutuhkan senyawa yang lebih kompleks dibandingkan autotrof, seperti monosakarida dan asam amino untuk menghasilkan molekul yang lebih kompleks. Organisme ini dapat diklasifikasikan lebih jauh dengan berdasarkan sumber energi , yaitu fotoautotrof and fotoheterotrof yang mendapatkan energi dari cahaya, sedangkan kemoautotrof dan kemoheterotrof mendapatkan energi dari reaksi oksidasi senyawa anorganik.
= Fiksasi karbon
=perbFotosintesis adalah reaksi sintesis karbohidrat dari cahaya dan karbondioksida. Pada tanaman, sianobakteri dan alga, fotosintesis oksigenik menguraikan molekul air,dengan oksigen sebagai zat sisa.Proses ini menggunakan ATP dan NADPH yang diproduksi oleh pusat reaksi fotosintesis untuk mengonversi CO2 menjadi gliserat-3-fosfat yang akan dikonversi menjadi glukosa. Reaksi fiksasi karbon ini akan dibantu oleh enzim Rubisco sebagai bagian siklus Calvin Ada tiga tipe fotosintesis yang terjadi pada tanaman, yaitu fiksasi karbon C3, C4 dan Fotosintesis CAM. Perbedaan ketiga tipe tanaman dapat dibedakan dari lintasan masuknya karbondioksida ke dalam siklus Calvin.Tanaman C3 memiksasi CO2 secara langsung, sedangkan C4 dan CAM memasukkan CO2 ke dalam senyawa lain terlebih dahulu sebagai bentuk adaptasi terhadap sinar matahari yang menyengat atau kondisi kering atau kurang air.
Pada prokariota fotosintetik, mekanisme fiksasi karbon lebih beragam. Fiksasi dapat terjadi dengan beberapa reaksi seperti, siklus Calvin, siklus Krebs terbalik, atau karboksilasi asetil-KoA . Prokariota kemoautotrof juga memiksasi melalui siklus Calvin tetapi menggunakan energi dari senyawa anorganik untuk menggerakkan reaksi.
= Karbohidrat and glikan
=Pada proses anabolisme karbohidrat, asam organik sederhana dapat dikonversi menjadi monosakarida seperti glukosa, dan dapat disusun menjadi polisakarida seperti pati. Produksi glukosa dapat dilakukan menggunakan bahan baku asam piruvat, asam laktat, gliserol, gliserat-3-fosfat dan asam amino dalam reaksi yang disebut glukoneogenesis. Glukoneogenesis mengonversi asam piruvat menjadi glukosa-6-fosfat melalui serangkaian senyawa intermediat yang ada juga di dalam reaksi glikolisis
Meskipun begitu, lintasan ini tidak sama dengan reaksi glikolisis yang berlangsung secara terbalik karena beberapa langkah dalam reaksi ini dikatalisis oleh enzim non-glikolitik. Kondisi ini penting untuk memungkinkan pembentukan dan penguraian glukosa berjalan dalam siklus yang berbeda dan mencegah terjadinya kedua lintasan berjalan secara bersamaan di dalam sebuah siklus yang sia-sia. Dalam keadaan berlimpah, glukosa dapat dikoversi menjadi glikogen melalui reaksi yang disebut glikogenesis sebagai bentuk penyimpanan energi selain lemak yang biasanya digunakan untuk mempertahankan glukosa di dalam darah
Polisakarida dan glikan tersusun dengan penambahan secara bertahap suatu monosakarida oleh reaksi glikosiltransferase dari gula pendonor aktif fosfat, seperti uridina difosfat glukosa (UDP-Glc) terhadap suatu gugus hidroksil aseptor pada polisakarida yang diinginkan. Selama gugus hidroksil pada cincin subtrat dapat menjadi aseptor, polisakarida yang diproduksi akan memiliki cabang struktur yang lurus atau bercabang. Polisakarida yang terbentuk dapat memiliki fungsi pada bentuk aslinya atau dapat dipindahkan ke lipid atau protein menggunakan enzim oligasakariltransferase
= Sintesis lipid
=biLintasan sintesis asam lemak memungkinkan sel untuk menghasilkan lipid yang diperlukan untuk pertumbuhan sel dan proliferasi dari prekursor yang berasal dari lintasan metabolisme intrinsik lainnya. Aktivitas lintasan sintesis asam lemak sangat terkait dengan pensinyalan mTOR, yang telah terbukti mendorong sintesis asam lemak melalui regulasi banyak enzim utama yang bertanggung jawab untuk sintesis lipid de novo, termasuk SREBP (protein pengikat elemen pengatur sterol), FASN (asam lemak sintase) dan ACC (asetil-KoA karboksilase) yang diinduksi oleh SREBP. Enzim pada proses biosintesis asam lemak dibagi menjadi dua kelompok. Pada fungi dan hewan, seluruh reaksi asam lemak sintase dilakukan oleh satu jenis protein tunggal multifungsi yang mengandung semua pusat reaksi di dalamnya yang disebut FAS I. Plastid tumbuhan, bakteri dan parasit memiliki sistem terpisah yang setiap komponennya disandi oleh gen berbeda yang menghasilkan suatu protein unik yang mengkatalisis satu langkah di dalam lintasan tersebut yang diberi nama FAS II.
Sintesis asam lemak menggunakan produk yang berasal dari beberapa lintasan metabolisme lainnya, terutama glikolisis, siklus TCA, dan lintasan pentosa fosfat. Untuk sintesis asam lemak rantai lurus, asam sitrat yang berasal dari siklus TCA dapat diekspor dari mitokondria ke sitosol melalui pembawa sitrat, di mana ATP sitrat liase mengubahnya menjadi asetil-koA, bersama dengan oksaloasetat. Asetil-KoA yang berasal dari proses ini kemudian dapat dikarboksilasi oleh ACC untuk menghasilkan malonil-KoA. Selanjutnya, FASN bertindak dalam cara yang tergantung pada NADPH untuk memperpanjang rantai asam lemak yang baru terbentuk sampai produk seperti asam palmitat disintesis. Asam lemak dengan panjang rantai alternatif dapat disintesis menggunakan asam palmitat sebagai substrat untuk pemanjangan, sementara reaksi desaturasi dapat dilakukan untuk menghasilkan asam lemak tak jenuh. Sintesis asam lemak rantai cabang berbeda dengan sintesis asam lemak lurus, yaitu membutuhkan asam amino rantai cabang seperti valin dan leusin sebagai substrat untuk perpanjangan. Lebih lanjut, asam lemak dapat dikondensasikan dengan gliserol produk dari glikolisis untuk menghasilkan banyak kemungkinan kombinasi triasilgliserol dan fosfolipid, yang merupakan komponen kunci dari banyak struktur seluler.
Selain asam lemak, proses anabolisme juga terjadi pada mamalia juga yang menggunakan gliserol dalam bentuk G-3-P yang dihasilkan dari reaksi fosforilasi gliserol oleh gliserol kinase atau reduksi dihidroksiaseton fosfat menggunakan enzim gliseraldehida 3-fosfat dehidrogenase. Dihidroksiasaseton fosfat dapat diturunkan dari senyawa glukosa atau piruvat. Pada kondisi normal, trigliserida atau gliserol-3-fosfat dihasilkan dari proses glikolisis dengan prekursor glukosa. Akantetapi, ketika konsentrasi glukosa menurun di dalam sitosol, gliserol dihasilkan dari proses reaksi gliseroneogenesis. Reaksi ini menggunakan asam piruvat, asam laktat, alanina, dan anion dari siklus asam sitrat sebagai prekursor pengganti. Fosfoenolpiruvat karboksikinase (PEPC-K) adalah enzim regulator utama yang berfungsi sebagai katalisator reaksi dekarboksilasi oksaloasetat menjadi fosfoenolpiruvat .
Terpena adalah kelompok lipid ,seperti karotenoid yang membentuk kelompok terbesar produk alami dari tumbuhan. Senyawa ini disusun atas susunan dan modifikasi unit isoprena yang diberikan oleh prekursor reaktif isopentenil pirofosfat dan dimetilalil pirofosfat Prekursor ini dapat disusun dengan dua cara. Pada hewan dan arkea, lintasan mevalonat menghasilkan senyawa ini dari asetil KoA, sedangkan pada tumbuhan dan bakteri, piruvat dan (G-3-P) digunakan sebagai substrat pada lintasan nonmevalonat . Salah satu reaksi penting yang mengunakan donor isoprena aktif ini adalah biosintesis sterol. Reaksi ini menyatukan unit isoprena untuk menyusun skualena, lalu dilipat dan membentuk kelompok cincin yang menyusun lanosterol Lanosterol bisa dikonversi menjadi sterol lainnya, seperti kolesterol dan ergosterol
Fosfatidilkolin merupakan kelompok fosfolipid yang disintesis melalui lintasan sitidin 5-difosfat (CDP)-kolin yang memfosforilasi kolin i menjadi fosfokolin oleh kolin kinase kemudian dikonversi menjadi CDP-kolin oleh CPT:fosfokolin sitidiltransferase. Selanjutnya, CDP-kolin dikombinasikan dengan diasilgliserol oleh dua enzim yang terintegrasi ke retikulum endoplasma: CDP-kolin:1,2-diasilgliserol kolinfosfotransferase (CPT) dan CDP-kolin: 1,2-diasilgliserol kolin/etanolamin fosfotransferase (CEPT). lintasan CDP-kolin terdapat di semua sel mamalia berinti. Namun, di hati, hingga 30% fosfatidilkolin dihasilkan oleh konversi fosfatidletanolamin menjadi fosfatidilkolin oleh fosfatidiletanolamin N-metiltransferase (PEMT). Selain sintesis fosfatidlkolin, fosfatidiletanolamin juga merupakan golongan fosfolipdid yang disintesis makhluk hidup melalui dua lintasan utama: lintasan CDP-etanolamin di retikulum endoplasma dan lintasan fosfatidilserin dekarboksilase (PSD) di mitokondria. lintasan CDP-etanolamin mirip dengan sintesis fosfatidilkolin. Fosfoetanolamin diubah menjadi CDP-etanolamin oleh CTP:fosfoetanolamin sitidiltransferase kemudian ditambahkan ke diasilgliserol oleh CEPT untuk membentuk fosfatidiletanolamin. lintasan PSD terjadi secara eksklusif di mitokondria, di mana fosfatidilserin didekarboksilasi oleh PSD untuk membentuk fosfatidiletanolamin. Sintesis fosfatidilserin, yang dikendalikan oleh dua sintase fosfatidilserin, merupakan langkah pembatas laju untuk sintesis fosfatidiletanolamin pada lintasan PSD.
= Protein
=Organisme memiliki kemampuan berbeda untuk mensintesis 20 jenis asam amino. Sebagian besar bakteri dan tumbuhan mampu semua jenis 20 asam amino. Namun, mamamalia hanya mampu mensintesis 11 asam amino nonesensial, sedangkan 9 asam amino esensial lainnya didapatkan dari makanan. Beberapa parasit sederhana, seperti bakteri Mycoplasma pneumoniae, tidak mempunyai kemampuan untuk mensintesis seluruh asam amino dan mengambil asam amino langsung dari inangnya. Seluruh asam amino disintesis dari senyawa intermediat di dalam proses reaksi glikolisis, siklus asam sitrat atau lintasan pentosa fosfar, Nitrogen disediakan oleh asam glutamat dan glutamina. Sintesis asam amino non esensial bergantung pada pembentuk asam alfa-keto yang sesuai yang akan ditransaminasi untuk membentuk asam amino.
Asam amino disusun menjadi protein yang disatukan bersama menjadi sebuah rantai ikatan peptida. Tiap protein yang berbeda memiliki sekuens yang unik dari residu asam amino yang merupakan struktur primernya . Asam amino dapat disambungkan dalam sekuens yang beragam untuk membentuk banyak variasi protein. Protein disusun dari asam amino yang diaktivasi oleh penempelan olem molekul Transfer RNA melalui ikatan ester.Prekursor aminoasil-tRNA dihasilkan oleh sebuah reaksi yang menggunakan ATP yang dilakukan oleh enzim sintetase aminoasll-tRNA Selanjutnya, aminoasil-tRNA ini menjadi substrat untuk ribosom yang menyatukan asam amino menjadi rantai protein memanjang menggunakan sekuens yang ada di dalam MRNA.
= Sintesis nukleotida dan penghematan
=Nukleotida disusun dari asam amino, karbondioksida dan asam format di lintasan yang membutuhkan energi metabolis dalam jumlah besar. Karena itu, sebagian besar organisme mempunyai sistem yang efisien untuk menghemat nukleotida yang belum terbentuk.Purina disintesis menjadi nukleosida ( basa yang melekat kepada ribosa) Adenina dan guanina disusun dari prekursor nukleosida inosina monofosfat yang disintesis menggunakan atom dari asam amino glisina, glutamina dan asam aspartat serta asam format yang dipindahkan dari koenzim tetrahidrofolat. Sedangkan, pirimidina disintesis dari basa orotat yang dibentuk dari glutamina dan asam aspartat.
Xenobiotika dan metabolisme redoks
Seluruh organisme secara konstan terpapar oleh senyawa yang mereka tidak bisa gunakan sebagai nutrisi dan dapat berbahaya, jika berakumulasi di dalam sel karena tidak memiliki fungsi metabolis. Senyawa yang berpotensi membahayakan ini disebut xenobiotik. Xenobiotik, seperti obat sintetis, racun alami, dan antibiotik didetokfisikasi oleh serangkaian enzim metabolis.Pada manusia,termasuk di antaranya sitokrom P450 oksidase, UDP-glukuronosiltransferase, and glutation S-transferase. Sistem ini terbagi menjadi tiga langkah. Langkah pertama ialah mengoksidasi xenobiotik (fase I) dan mengonjungasi gugus berbahan dasar air terhadap molekul (fase II). Xenobiotik larut air yang telah temodikasi dapat dipompa keluar dari sel dan organisme multiseluler akan mencerna lebih jauh, sebelum senyawa tersebut dieskresikan (fase III). Pada ilmu ekologi, reaksi ini sangat penting dalam proses biodegradasi polutan oleh mikrob dan bioremediasi lahan yang terkontaminasi serta tumpahan minyak. Banyak reaksi mikrob yang juga ada pada organisme multiseluler. Akan tetapi, dikarenakan diversitas jenis mikrob, organisme ini dapat menangani xenobiotik dalam jangkauan yang lebih luas dibandingkan dengan organisme multiseluler. Organisme ini juga dapat mendegradasi polutan organik persisten seperti senyawa organoklorida.
Masalah serupa untuk xenobiotik terjadi untuk organisme aerobik adalah stres oksidatif. Stres oksidatif dimulai dengan reaksi fosforilasi oksidatif dan pembentukan ikatan disulfida selama pelipatan protein yang menghasilkan spesi oksigen reaktif, seperti hidrogen peroksida Oksidan yang bersifat merusak ini dihilangkan oleh metabolit antioksidan seperti glutation dan enzim katalase dan peroksidase.
Termodinamika organisme
Organisme hidup harus mematuhi hukum termodinamika yang mengatur perpindahan panas dan usaha. Hukum termodinamika kedua menyatakan bahwa di dalam sistem tertutup, jumlah entropi tidak dapat berkurang. Walaupun kompleksitas organisme hidup terlihat berkontradiksi terhadap hukum tersebut, kehidupan hanya terjadi karena seluruh organisme merupakan sistem terbuka yang menukar materi dan energi ke lingkungannya. Jadi, sistem kehidupan tidak berada di dalam kesetimbangan, tetapi berada di dalam sistem disipatif yang mempertahankan keadaan kompleksitas tinggi yang menyebabkan peningkatan entropi sekitar. Metabolisme mencapai kondisi ini dengan memasangkan reaksi katabolisme yang spontan dengan reaksi nonspontan dari anabolisme. Pada terminologi termodinamika, metabolisme mempertahankan keteraturan dengan menciptakan ketidakteraturan.
Regulasi dan kontrol
Karena lingkungan sebagian besar organisme terus berubah, reaksi metabolisme harus diatur dengan baik untuk mempertahankan serangkaian kondisi konstan dalam sel. Kondisi ini disebut homeostasis. Ada dua konsep yang saling berhubungan dekat dan harus dimengerti untuk memahami bagaimana lintasan metabolisme dapat dikontrol. Pertama, regulasi suatu enzim di dalam lintasan dilihat dari bagaimana aktivitasnya meningkat dan berkurang sebagai respons terhadap sinyal. Kedua, seberapa besar efek perubahan aktivitas yang dilakukan oleh enzim mempunyai pengaruh pada keseluruhan lintasan yang terjadi (jumlah fluks yang terjadi pada lintasan) Misalnya, ketika suatu enzim menunjukkan perubahan yang besar pada suatu aktivitas, tetapi perubahan ini hanya mempunyai efek yang kecil pada fluks yang ada di lintasan metabolisme, maka enzim ini tidak terlibat sebagai kontrol lintasan.
Ada beberapa tingkatan dari regulasi metabolisme. Pada regulasi intrinsik, lintasan metabolisme meregulasi dirinya sendiri sebagai respons terhadap perubahan jumlah substrat atau produk. Misalnya, berkurangnya jumlah produk akan meningkatkan flux yang ada di lintasan sebagai kompensasi. Jenis regulasi ini sering melibatkan regulasi alosterik dari beberapa enzim yang ada di lintasan. Kontrol ekstrinsi melibatkan suatu sel yang ada di dalam organisme multiseluler yang mengubah metabolismenya sebagai respons terhadap sinyal dari sel lain, Sinyal ini biasanya dalam bentuk pengirim pesan larut air, seperti hormon dan faktor pertumbuhan yang dapat dideteksi oleh reseptor spesifik yang ada di permukaan sel. Sinyal ini akan ditransmisikan ke dalam sel oleh sistem penghantar kedua yang biasanya melibatkan reaksi fosforilasi protein.
Suatu contoh yang dapat menggambarkan kontrol ekstrinsik ialah regulasi metabolisme glukosa oleh hormon insulin. Insulin dihasilkan sebagai respons dari kenaikan konsentrasi gula darah. Melekatnya hormon pada reseptor insulin mengaktifkan kinase protein secara berurutan yang menyebabkan sel mengambil glukosa dan mengonversinya menjadi bentuk simpanan glukosa, seperti asam lemak dan glikogen. Metabolisme glikogen dikontrol oleh aktivitas enzim fosforilase yang menguraikan glikogen dan enzim glikogen sintase yang mensintesisnya, Enzim ini diregulasi di dalam sebuah proses timbal balik dengan reaksi fosforilasi yang menghambat glikogen sintase, tetapi mengaktifkan fosforilase. Insulin menyebabkan sintesis glikogen dengan mengaktifkan protein fosfatase dan menganghasilkan penurunan fosfforilasi enzim ini.
Evolusi
Lintasan metabolisme utama yang telah dijelaskan di atas, seperti glikolisis dan siklus asam sitrat ada pada seluruh tiga domain makhluk hidup dan juga ada pada leluhur universal terakhir. Sel leluhur universal merupakan prokariota dan mungkin merupakan suatu metanogen yang memiliki metabolisme asam amino, nukleotida, karbohidrat, dan lipid yang ekstensif. Retensi keberadaan lintasan purba pada evolusi makhluk hidup setelahnya mungkin merupakan hasil dari reaksi yang memiliki solusi optimum untuk masalah metabolisme tertentu dengan lintasan, seperti glikolisis dan siklus asam sitrat yang menghasilkan produk akhir dengan efisiensi yang tinggi dan dengan langkah dalam jumlah minimum. Lintasan metabolisme berbasis enzim pertama mungkin merupakan bagian dari metabolisme nukleotida purina, sedangkan lintasan metabolisme sebelumnya merupakan bagian dari dunia RNA purba.
Banyak model yang diusulkan untuk menjelaskan bagaimana lintasan metabolisme baru berevolusi. Model ini termasuk penambahan secara berurutan enzim baru kepada lintasan purba yang pendek, duplikasi, lalu menyebarkan ke seluruh lintasan sekaligus memasukkan enzim yang telah ada dan menyusunnya menjadi lintasan reaksi yang baru. Kepentingan relatif dari mekanisme ini masih belum jelas, tetapi studi genomika menunjukkan bahwa enzim yang ada di dalam lintasan kemungkinan mempunyai leluhur yang sama. Mekanisme ini menyatakan kemungkinan bahwa banyak lintasan berevolusi secara tahap demi tahap dengan fungsi baru yang diciptakan oleh tahap yang sebelumnya ada di dalam lintasan. Sebuah model alternatif berasal dari studi tentang jejak evolusi struktur protein di dalam jaringan metabolisme . Studi ini menyatakan kemungkinan bahwa enzim perlahan bergabung dengan meminjam enzim dengan fungsi yang sama pada jalur metabolisme yang berbeda (ada di dalam basis data MANET) Proses bergabungnya enzim ini menghasilkan sebuah mosaik enzim evolusioner. Kemungkinan ketiga ialah sebagian metabolisme mungkin ada sebagai 'modul' yang dapat digunakan kembali di dalam lintasan berbeda dan melakukan fungsi yang sama pada molekul berbeda
Evolusi juga dapat menyebabkan hilangnya fungsi metabolisme. Sebagai contoh, beberapa proses metabolisme pada parasit yang tidak esensial untuk bertahan hidup menjadi hilang sehingga kebutuhan asam amino, nukleotida, dan karbohidrat mereka ambil dari inang. Kondisi yang sama juga dapat dilihat pada organisme endosimbiotik.
Investigasi dan manipulasi
Secara klasik, metabolisme dipelajari dengan pendekatan reduksionis yang berfokus pada lintasan metabolisme tunggal. Pendekatan ini menggunakan pelacak radioaktif pada tingkat organisme, jaringan, atau sel. Lintasan metabolisme dari prekursor hingga produk akhir didefinisikan dengan mengidentifikasi berbagai senyawa intermediat dan produk yang memiliki label senyawa radioaktif. Enzim-enzim yang mengatalisis reaksi-reaksi kimia dimurnikan sehingga kinetika dan responsnya terhadap inhibitor dapat dipelajari. Pendekatan paralel juga dilakukan untuk mengidentifikasi molekul-molekul kecil di dalam sel dan jaringan; serangkaian molekul lengkap ini dikenal dengan nama metabolom. Meskipun dapat memberikan gambaran yang baik tentang struktur dan lintasan metabolisme sederhana, studi ini tidak memadai ketika diterapkan pada sistem yang lebih kompleks, seperti metabolisme pada sebuah sel lengkap.
Kompleksitas jejaring metabolisme di dalam sel yang mengandung ribuan enzim berbeda dapat dilihat pada ilustrasi yang menampilkan reaksi 43 protein dan 40 metabolit: urutan genom pada gambar tersebut mengandung hingga 26.000 gen. Data genomika seperti ini dapat digunakan untuk mengonstruksi kembali jejaring reaksi biokimia yang lengkap dan menghasilkan model matematika yang lebih komprehensif untuk menjelaskan dan memprediksi bagaimana reaksi ini bekerja. Model ini ampuh ketika digunakan untuk mengintegrasikan data lintasan dan metabolit yang didapatkan melalui metode klasik dengan data ekspresi gen yang didapatkan dari studi proteomika serta DNA microarray Dengan teknik ini, model metabolisme manusia dapat dibentuk yang selanjutnya mengarahkan penemuan obat dan penelitian biokimia. Model ini juga digunakan dalam analisis jejaring untuk mengklasifikasikan penyakit manusia menjadi kelompok-kelompok berdasarkan kesamaan protein dan metabolit mereka.
Jejaring metabolisme bakteri adalah contoh yang sangat baik dari organisasi dasi kupu-kupu, suatu proses yang masukannya adalah berbagai nutrien yang sangat beragam dan keluarannya adalah berbagai produk dan makromolekul kompleks yang sangat bervariasi meskipun prosesnya hanya melibatkan senyawa intermediat yang jenisnya relatif sedikit. Rekayasa metabolisme merupakan penerapan teknologi paling utama dari informasi ini. Organisme seperti khamir, tumbuhan, dan bakteri direkayasa genetiknya agar mereka lebih berguna dalam proses bioteknologi dan produksi obat-obatan seperti antibotik atau produksi bahan kimia industri seperti etilena glikol dan asam sikimat.
Lihat pula
Metabolomika
Metabolom
Metabolit
Laju metabolisme basal
Efek termik pada makanan
Biodegradasi
Referensi
Bacaan lebih lanjut
Aryulina, Diah (2007). Biologi 3 SMA dan MA Untuk Kelas XII. Jakarta: Esis/Erlangga. ISBN 974-734-551-3. (Indonesia)
Pranala luar
(Inggris) Eksperimen-eksperimen Santorio Santorio
(Inggris) Interactive Flow Chart of the Major Metabolic Pathways Diarsipkan 2006-02-18 di Wayback Machine.
Kata Kunci Pencarian:
- Metabolisme
- Metabolisme lipid
- Metabolisme karbohidrat
- Zat sisa metabolisme
- Metabolisme obat
- Metabolisme asam lemak
- Metilprednisolon
- Metabolit sekunder
- Lintasan metabolisme
- Gangguan metabolisme
- PRIAM enzyme-specific profiles
- Gastric inhibitory polypeptide
- Triiodothyronine
- Applied Physiology, Nutrition, and Metabolism
- Estradiol valerate
- Alain Mucchielli
- Glucagon receptor
- Dihydrotestosterone
- Anabolic steroid
- Folate