- Source: P-Laplacian
In mathematics, the p-Laplacian, or the p-Laplace operator, is a quasilinear elliptic partial differential operator of 2nd order. It is a nonlinear generalization of the Laplace operator, where
p
{\displaystyle p}
is allowed to range over
1
<
p
<
∞
{\displaystyle 1<p<\infty }
. It is written as
Δ
p
u
:=
d
i
v
(
|
∇
u
|
p
−
2
∇
u
)
.
{\displaystyle \Delta _{p}u:=div(|\nabla u|^{p-2}\nabla u).}
Where the
|
∇
u
|
p
−
2
{\displaystyle |\nabla u|^{p-2}}
is defined as
|
∇
u
|
p
−
2
=
[
(
∂
u
∂
x
1
)
2
+
⋯
+
(
∂
u
∂
x
n
)
2
]
p
−
2
2
{\displaystyle \quad |\nabla u|^{p-2}=\left[\textstyle \left({\frac {\partial u}{\partial x_{1}}}\right)^{2}+\cdots +\left({\frac {\partial u}{\partial x_{n}}}\right)^{2}\right]^{\frac {p-2}{2}}}
In the special case when
p
=
2
{\displaystyle p=2}
, this operator reduces to the usual Laplacian. In general solutions of equations involving the p-Laplacian do not have second order derivatives in classical sense, thus solutions to these equations have to be understood as weak solutions. For example, we say that a function u belonging to the Sobolev space
W
1
,
p
(
Ω
)
{\displaystyle W^{1,p}(\Omega )}
is a weak solution of
Δ
p
u
=
0
in
Ω
{\displaystyle \Delta _{p}u=0{\mbox{ in }}\Omega }
if for every test function
φ
∈
C
0
∞
(
Ω
)
{\displaystyle \varphi \in C_{0}^{\infty }(\Omega )}
we have
∫
Ω
|
∇
u
|
p
−
2
∇
u
⋅
∇
φ
d
x
=
0
{\displaystyle \int _{\Omega }|\nabla u|^{p-2}\nabla u\cdot \nabla \varphi \,dx=0}
where
⋅
{\displaystyle \cdot }
denotes the standard scalar product.
Energy formulation
The weak solution of the p-Laplace equation with Dirichlet boundary conditions
{
−
Δ
p
u
=
f
in
Ω
u
=
g
on
∂
Ω
{\displaystyle {\begin{cases}-\Delta _{p}u=f&{\mbox{ in }}\Omega \\u=g&{\mbox{ on }}\partial \Omega \end{cases}}}
in a domain
Ω
⊂
R
N
{\displaystyle \Omega \subset \mathbb {R} ^{N}}
is the minimizer of the energy functional
J
(
u
)
=
1
p
∫
Ω
|
∇
u
|
p
d
x
−
∫
Ω
f
u
d
x
{\displaystyle J(u)={\frac {1}{p}}\,\int _{\Omega }|\nabla u|^{p}\,dx-\int _{\Omega }f\,u\,dx}
among all functions in the Sobolev space
W
1
,
p
(
Ω
)
{\displaystyle W^{1,p}(\Omega )}
satisfying the boundary conditions in the trace sense. In the particular case
f
=
1
,
g
=
0
{\displaystyle f=1,g=0}
and
Ω
{\displaystyle \Omega }
is a ball of radius 1, the weak solution of the problem above can be explicitly computed and is given by
u
(
x
)
=
C
(
1
−
|
x
|
p
p
−
1
)
{\displaystyle u(x)=C\,\left(1-|x|^{\frac {p}{p-1}}\right)}
where
C
{\displaystyle C}
is a suitable constant depending on the dimension
N
{\displaystyle N}
and on
p
{\displaystyle p}
only. Observe that for
p
>
2
{\displaystyle p>2}
the solution is not twice differentiable in classical sense.
See also
Infinity Laplacian
Notes
Sources
Evans, Lawrence C. (1982). "A New Proof of Local
C
1
,
α
{\displaystyle C^{1,\alpha }}
Regularity for Solutions of Certain Degenerate Elliptic P.D.E." Journal of Differential Equations. 45: 356–373. doi:10.1016/0022-0396(82)90033-x. MR 0672713.
Lewis, John L. (1977). "Capacitary functions in convex rings". Archive for Rational Mechanics and Analysis. 66 (3): 201–224. Bibcode:1977ArRMA..66..201L. doi:10.1007/bf00250671. MR 0477094. S2CID 120469946.
Further reading
Ladyženskaja, O. A.; Solonnikov, V. A.; Ural'ceva, N. N. (1968), Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, vol. 23, Providence, RI: American Mathematical Society, pp. XI+648, ISBN 9780821886533, MR 0241821, Zbl 0174.15403.
Uhlenbeck, K. (1977). "Regularity for a class of non-linear elliptic systems". Acta Mathematica. 138: 219–240. doi:10.1007/bf02392316. MR 0474389.
Notes on the p-Laplace equation by Peter Lindqvist
Juan Manfredi, Strong comparison Principle for p-harmonic functions
Kata Kunci Pencarian:
- Supermanifold
- Teori akustik
- Kalkulus vektor
- Alir Ricci
- Daftar masalah matematika yang belum terpecahkan
- Sistem koordinat polar
- Sejarah teori grup
- P-Laplacian
- Laplace operator
- Laplacian matrix
- Loop-erased random walk
- Infinity Laplacian
- Laplace–Beltrami operator
- Laplacian smoothing
- Blob detection
- Fractional Laplacian
- Elliptic operator