• Source: Particle number operator
    • In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles.
      The following is in bra–ket notation: The number operator acts on Fock space. Let





      |

      Ψ



      ν


      =

      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      n





      ν




      {\displaystyle |\Psi \rangle _{\nu }=|\phi _{1},\phi _{2},\cdots ,\phi _{n}\rangle _{\nu }}


      be a Fock state, composed of single-particle states




      |


      ϕ

      i





      {\displaystyle |\phi _{i}\rangle }

      drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators




      a




      (

      ϕ

      i


      )


      {\displaystyle a^{\dagger }(\phi _{i})}

      and



      a
      (

      ϕ

      i


      )



      {\displaystyle a(\phi _{i})\,}

      we define the number operator by








      N

      i


      ^








      =



      d
      e
      f







      a




      (

      ϕ

      i


      )
      a
      (

      ϕ

      i


      )


      {\displaystyle {\hat {N_{i}}}\ {\stackrel {\mathrm {def} }{=}}\ a^{\dagger }(\phi _{i})a(\phi _{i})}


      and we have








      N

      i


      ^




      |

      Ψ



      ν


      =

      N

      i



      |

      Ψ



      ν




      {\displaystyle {\hat {N_{i}}}|\Psi \rangle _{\nu }=N_{i}|\Psi \rangle _{\nu }}


      where




      N

      i




      {\displaystyle N_{i}}

      is the number of particles in state




      |


      ϕ

      i





      {\displaystyle |\phi _{i}\rangle }

      . The above equality can be proven by noting that








      a
      (

      ϕ

      i


      )

      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n





      ν




      =





      N

      i





      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n





      ν







      a




      (

      ϕ

      i


      )

      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n





      ν




      =





      N

      i





      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n





      ν








      {\displaystyle {\begin{matrix}a(\phi _{i})|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }&=&{\sqrt {N_{i}}}|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }\\a^{\dagger }(\phi _{i})|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }&=&{\sqrt {N_{i}}}|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }\end{matrix}}}


      then












      N

      i


      ^




      |

      Ψ



      ν




      =



      a




      (

      ϕ

      i


      )
      a
      (

      ϕ

      i


      )


      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n






      ν







      =





      N

      i





      a




      (

      ϕ

      i


      )


      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n






      ν







      =





      N

      i







      N

      i






      |


      ϕ

      1


      ,

      ϕ

      2


      ,

      ,

      ϕ

      i

      1


      ,

      ϕ

      i


      ,

      ϕ

      i
      +
      1


      ,

      ,

      ϕ

      n






      ν







      =



      N

      i



      |

      Ψ



      ν








      {\displaystyle {\begin{array}{rcl}{\hat {N_{i}}}|\Psi \rangle _{\nu }&=&a^{\dagger }(\phi _{i})a(\phi _{i})\left|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\right\rangle _{\nu }\\[1ex]&=&{\sqrt {N_{i}}}a^{\dagger }(\phi _{i})\left|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i+1},\cdots ,\phi _{n}\right\rangle _{\nu }\\[1ex]&=&{\sqrt {N_{i}}}{\sqrt {N_{i}}}\left|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\right\rangle _{\nu }\\[1ex]&=&N_{i}|\Psi \rangle _{\nu }\\[1ex]\end{array}}}



      See also


      Harmonic oscillator
      Quantum harmonic oscillator
      Second quantization
      Quantum field theory
      Thermodynamics
      (-1)F


      References


      Bruus, Henrik; Flensberg, Karsten (2004). Many-body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford University Press. ISBN 0-19-856633-6.
      Second quantization notes by Fradkin

    Kata Kunci Pencarian: