• Source: Quasi-triangular quasi-Hopf algebra
  • A quasi" target="_blank">quasi-triangular quasi" target="_blank">quasi-Hopf algebra is a specialized form of a quasi" target="_blank">quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi" target="_blank">quasi-triangular Hopf algebra.
    A quasi" target="_blank">quasi-triangular quasi" target="_blank">quasi-Hopf algebra is a set






    H

    A




    =
    (


    A


    ,
    R
    ,
    Δ
    ,
    ε
    ,
    Φ
    )


    {\displaystyle {\mathcal {H_{A}}}=({\mathcal {A}},R,\Delta ,\varepsilon ,\Phi )}

    where






    B

    A




    =
    (


    A


    ,
    Δ
    ,
    ε
    ,
    Φ
    )


    {\displaystyle {\mathcal {B_{A}}}=({\mathcal {A}},\Delta ,\varepsilon ,\Phi )}

    is a quasi" target="_blank">quasi-Hopf algebra and



    R



    A

    A




    {\displaystyle R\in {\mathcal {A\otimes A}}}

    known as the R-matrix, is an invertible element such that




    R
    Δ
    (
    a
    )
    =
    σ

    Δ
    (
    a
    )
    R


    {\displaystyle R\Delta (a)=\sigma \circ \Delta (a)R}


    for all



    a



    A




    {\displaystyle a\in {\mathcal {A}}}

    , where



    σ
    :


    A

    A





    A

    A




    {\displaystyle \sigma \colon {\mathcal {A\otimes A}}\rightarrow {\mathcal {A\otimes A}}}

    is the switch map given by



    x

    y

    y

    x


    {\displaystyle x\otimes y\rightarrow y\otimes x}

    , and




    (
    Δ

    id
    )
    R
    =

    Φ

    231



    R

    13



    Φ

    132



    1



    R

    23



    Φ

    123




    {\displaystyle (\Delta \otimes \operatorname {id} )R=\Phi _{231}R_{13}\Phi _{132}^{-1}R_{23}\Phi _{123}}





    (
    id

    Δ
    )
    R
    =

    Φ

    312



    1



    R

    13



    Φ

    213



    R

    12



    Φ

    123



    1




    {\displaystyle (\operatorname {id} \otimes \Delta )R=\Phi _{312}^{-1}R_{13}\Phi _{213}R_{12}\Phi _{123}^{-1}}


    where




    Φ

    a
    b
    c


    =

    x

    a




    x

    b




    x

    c




    {\displaystyle \Phi _{abc}=x_{a}\otimes x_{b}\otimes x_{c}}

    and




    Φ

    123


    =
    Φ
    =

    x

    1




    x

    2




    x

    3





    A

    A

    A




    {\displaystyle \Phi _{123}=\Phi =x_{1}\otimes x_{2}\otimes x_{3}\in {\mathcal {A\otimes A\otimes A}}}

    .
    The quasi" target="_blank">quasi-Hopf algebra becomes triangular if in addition,




    R

    21



    R

    12


    =
    1


    {\displaystyle R_{21}R_{12}=1}

    .
    The twisting of






    H

    A






    {\displaystyle {\mathcal {H_{A}}}}

    by



    F



    A

    A




    {\displaystyle F\in {\mathcal {A\otimes A}}}

    is the same as for a quasi" target="_blank">quasi-Hopf algebra, with the additional definition of the twisted R-matrix
    A quasi" target="_blank">quasi-triangular (resp. triangular) quasi" target="_blank">quasi-Hopf algebra with



    Φ
    =
    1


    {\displaystyle \Phi =1}

    is a quasi" target="_blank">quasi-triangular (resp. triangular) Hopf algebra as the latter two conditions in the definition reduce the conditions of quasi" target="_blank">quasi-triangularity of a Hopf algebra.
    Similarly to the twisting properties of the quasi" target="_blank">quasi-Hopf algebra, the property of being quasi" target="_blank">quasi-triangular or triangular quasi" target="_blank">quasi-Hopf algebra is preserved by twisting.


    See also


    Ribbon Hopf algebra


    References


    Vladimir Drinfeld, "quasi" target="_blank">Quasi-Hopf algebras", Leningrad mathematical journal (1989), 1419–1457
    J. M. Maillet and J. Sanchez de Santos, "Drinfeld Twists and Algebraic Bethe Ansatz", American Mathematical Society Translations: Series 2 Vol. 201, 2000

Kata Kunci Pencarian: