• Source: Ribbon Hopf algebra
  • A ribbon Hopf algebra



    (
    A
    ,

    ,
    η
    ,
    Δ
    ,
    ε
    ,
    S
    ,


    R


    ,
    ν
    )


    {\displaystyle (A,\nabla ,\eta ,\Delta ,\varepsilon ,S,{\mathcal {R}},\nu )}

    is a quasitriangular Hopf algebra which possess an invertible central element



    ν


    {\displaystyle \nu }

    more commonly known as the ribbon element, such that the following conditions hold:





    ν

    2


    =
    u
    S
    (
    u
    )
    ,

    S
    (
    ν
    )
    =
    ν
    ,

    ε
    (
    ν
    )
    =
    1


    {\displaystyle \nu ^{2}=uS(u),\;S(\nu )=\nu ,\;\varepsilon (\nu )=1}





    Δ
    (
    ν
    )
    =
    (



    R



    21





    R



    12



    )


    1


    (
    ν

    ν
    )


    {\displaystyle \Delta (\nu )=({\mathcal {R}}_{21}{\mathcal {R}}_{12})^{-1}(\nu \otimes \nu )}


    where



    u
    =

    (
    S


    id

    )
    (



    R



    21


    )


    {\displaystyle u=\nabla (S\otimes {\text{id}})({\mathcal {R}}_{21})}

    . Note that the element u exists for any quasitriangular Hopf algebra, and




    u
    S
    (
    u
    )


    {\displaystyle uS(u)}

    must always be central and satisfies



    S
    (
    u
    S
    (
    u
    )
    )
    =
    u
    S
    (
    u
    )
    ,
    ε
    (
    u
    S
    (
    u
    )
    )
    =
    1
    ,
    Δ
    (
    u
    S
    (
    u
    )
    )
    =
    (



    R



    21





    R



    12



    )


    2


    (
    u
    S
    (
    u
    )

    u
    S
    (
    u
    )
    )


    {\displaystyle S(uS(u))=uS(u),\varepsilon (uS(u))=1,\Delta (uS(u))=({\mathcal {R}}_{21}{\mathcal {R}}_{12})^{-2}(uS(u)\otimes uS(u))}

    , so that all that is required is that it have a central square root with the above properties.
    Here




    A


    {\displaystyle A}

    is a vector space







    {\displaystyle \nabla }

    is the multiplication map




    :
    A

    A

    A


    {\displaystyle \nabla :A\otimes A\rightarrow A}





    Δ


    {\displaystyle \Delta }

    is the co-product map



    Δ
    :
    A

    A

    A


    {\displaystyle \Delta :A\rightarrow A\otimes A}





    η


    {\displaystyle \eta }

    is the unit operator



    η
    :

    C


    A


    {\displaystyle \eta :\mathbb {C} \rightarrow A}





    ε


    {\displaystyle \varepsilon }

    is the co-unit operator



    ε
    :
    A


    C



    {\displaystyle \varepsilon :A\rightarrow \mathbb {C} }





    S


    {\displaystyle S}

    is the antipode



    S
    :
    A

    A


    {\displaystyle S:A\rightarrow A}







    R




    {\displaystyle {\mathcal {R}}}

    is a universal R matrix
    We assume that the underlying field



    K


    {\displaystyle K}

    is




    C



    {\displaystyle \mathbb {C} }


    If



    A


    {\displaystyle A}

    is finite-dimensional, one could equivalently call it ribbon Hopf if and only if its category of (say, left) modules is ribbon; if



    A


    {\displaystyle A}

    is finite-dimensional and quasi-triangular, then it is ribbon if and only if its category of (say, left) modules is pivotal.


    See also


    Quasitriangular Hopf algebra
    Quasi-triangular quasi-Hopf algebra


    References


    Altschuler, D.; Coste, A. (1992). "Quasi-quantum groups, knots, three-manifolds and topological field theory". Commun. Math. Phys. 150 (1): 83–107. arXiv:hep-th/9202047. Bibcode:1992CMaPh.150...83A. doi:10.1007/bf02096567.
    Chari, V. C.; Pressley, A. (1994). A Guide to Quantum Groups. Cambridge University Press. ISBN 0-521-55884-0.
    Drinfeld, Vladimir (1989). "Quasi-Hopf algebras". Leningrad Math J. 1: 1419–1457.
    Majid, Shahn (1995). Foundations of Quantum Group Theory. Cambridge University Press.

Kata Kunci Pencarian: