- Source: Transkripsi (genetik)
Dalam genetika, transkripsi (serapan dari bahasa Belanda: transcriptie) adalah pembuatan RNA terutama mRNA dengan menyalin sebagian berkas DNA oleh enzim RNA polimerase. Proses transkripsi menghasilkan mRNA dari DNA di dalam sel yang menjadi langkah awal sintesis protein. Transkripsi merupakan bagian dari rangkaian ekspresi genetik. Pengertian asli "transkripsi" adalah alih aksara atau penyalinan. Di sini, yang dimaksud adalah mengubah "teks" DNA menjadi RNA. Sebenarnya, yang berubah hanyalah basa nitrogen timina di DNA yang pada RNA digantikan oleh urasil.
Proses
Transkripsi berlangsung di dalam inti sel atau di dalam matriks mitokondria dan plastida. Transkripsi dapat dipicu oleh rangsangan dari luar maupun tanpa rangsangan. Pada proses tanpa rangsangan, transkripsi berlangsung terus-menerus (gen-gennya disebut gen konstitutif atau "gen pengurus rumah", house-keeping genes). Sementara itu, gen yang memerlukan rangsangan biasanya gen yang hanya diproduksi sewaktu-waktu; gennya disebut gen regulatorik karena biasanya mengatur mekanisme khusus. Rangsangan akan mengaktifkan bagian promoter inti, segmen gen yang berfungsi sebagai pencerap RNA polimerase yang terletak di bagian hulu bagian yang akan disalin (disebut transcription unit), tidak jauh dari ujung 5' gen. Promoter inti terdiri dari kotak TATA, kotak CCAAT dan kotak GC.
Sebelum RNA polimerase dapat terikat pada promoter inti, faktor transkripsi TFIID akan membentuk kompleks dengan kotak TATA. Inhibitor dapat mengikat pada kompleks TFIID-TATA dan mencegah terjadinya kompleks dengan faktor transkripsi lain, namun hal ini dapat dicegah dengan TFIIA yang membentuk kompleks DA-TATA. Setelah itu TFIIB dan TFIIF akan turut terikat membentuk kompleks DABF-TATA. Setelah itu RNA polimerase akan mengikat pada DABF-TATA, dan disusul dengan TFIIE, TFIIH dan TFIIJ.
Kompleks tersebut terjadi pada bagian kotak TATA yang terletak sekitar 10-25 pasangan basa di bagian hulu (upstream) dari kodon mulai (AUG). Adanya faktor transkripsi ini akan menarik enzim RNA polimerase mendekat ke DNA dan kemudian menempatkan diri pada tempat yang sesuai dengan kodon mulai (TAC pada berkas DNA). Berkas DNA yang ditempel oleh RNA polimerase disebut sebagai berkas templat, sementara berkas pasangannya disebut sebagai berkas kode (karena memiliki urutan basa yang sama dengan RNA yang dibuat). Pada awal transkripsi, enzim guaniltransferase menambahkan gugus m7Gppp pada ujung 5' untai pre-mRNA. Sejumlah ATP diperlukan untuk membuat RNA polimerase mulai bergerak dari ujung 3' (ujung karboksil) berkas templat ke arah ujung 5' (ujung amino). pre-mRNA yang terbentuk dengan demikian berarah 5' → 3'. Pergerakan RNA polimerase akan berhenti apabila ia menemui urutan basa yang sesuai dengan kodon berhenti, dan deret AAUAAA akan ditambahkan pada pangkal 3' pre-mRNA. Setelah proses selesai, RNA polimerase akan lepas dari DNA, sedangkan pre-mRNA akan teriris sekitar 20 bp dari deret AAUAAA dan sebuah enzim, poli(A) polimerase akan menambahkan deret antara 150 - 200 adenosina untuk membentuk pre-mRNA yang lengkap yang disebut mRNA primer.
Tergantung intensitasnya, dalam satu berkas transcription unit sejumlah RNA polimerase dapat bekerja secara simultan. Intensitas transkripsi ditentukan oleh keadaan di sejumlah bagian tertentu pada DNA. Ada bagian yang disebut suppressor yang menekan intensitas, dan ada yang disebut enhancer yang memperkuatnya.
Hasil
Hasil transkripsi yaitu berkas RNA yang masih "mentah" yang disebut mRNA primer. Di dalamnya terdapat fragmen berkas untuk protein yang mengatur dan membantu sintesis protein (translasi) selain fragmen untuk dilanjutkan dalam translasi sendiri, ditambah dengan bagian yang nantinya akan dipotong (intron). Berkas RNA ini selanjutnya akan mengalami proses yang disebut sebagai proses pascatranskripsi (post-transcriptional process).
Langkah utama
Transkripsi dibagi menjadi inisiasi, pelepasan promotor, perpanjangan, dan penghentian.
= Inisiasi
=Transkripsi dimulai dengan pengikatan RNA polimerase, bersama dengan satu atau lebih faktor transkripsi umum, ke urutan DNA spesifik yang disebut sebagai "promotor" untuk membentuk "kompleks tertutup" RNA polimerase-promotor. Dalam "kompleks tertutup", DNA promotor masih sepenuhnya beruntai ganda.
= Perpanjangan (elongasi)
=Satu untai DNA, untai cetakan (atau untai non-penyandi), digunakan sebagai cetakan untuk sintesis RNA. Saat transkripsi berlangsung, RNA polimerase melintasi untai cetakan dan menggunakan komplementaritas pasangan basa dengan cetakan DNA membentuk salinan RNA (yang memanjang selama traversal). Meskipun RNA polimerase melintasi untai cetakan dari 3' → 5', untai pengkode (non-templat) dan RNA yang baru terbentuk juga dapat digunakan sebagai titik referensi, sehingga transkripsi dapat digambarkan terjadi 5' → 3'. Ini menghasilkan molekul RNA dari 5' → 3', salinan persis dari untai pengkode (kecuali timin diganti dengan urasil, dan nukleotida terdiri dari gula ribosa 5-karbon).
= Penghentian (terminasi)
=Bakteri menggunakan dua strategi berbeda untuk terminasi transkripsi – terminasi tidak tergantung Rho dan terminasi tergantung Rho. Dalam penghentian tidak tergantung Rho, transkripsi RNA berhenti ketika molekul RNA yang baru disintesis membentuk loop jepit rambut kaya G-C diikuti dengan lepasnya U. Ketika jepit rambut terbentuk, tekanan mekanis memutuskan ikatan rU-dA yang lemah, mengisi hibrid DNA-RNA. Hal ini menarik transkrip poli-U keluar dari situs aktif RNA polimerase, dan mengakhiri transkripsi. Dalam terminasi tergantung Rho, faktor protein yang disebut "Rho" mengacaukan interaksi antara cetakan dan mRNA, sehingga melepaskan mRNA yang baru disintesis dari kompleks elongasi.
Terminasi transkripsi pada eukariot kurang dipahami dengan baik dibandingkan pada bakteri, tetapi melibatkan pembelahan transkrip baru diikuti dengan penambahan adenin tidak tergantung cetakan pada ujung 3' yang baru, dalam proses yang disebut poliadenilasi.
Transkripsi terbalik
Beberapa virus (seperti HIV, penyebab AIDS), memiliki kemampuan untuk mentranskripsi RNA menjadi DNA. HIV memiliki genom RNA yang ditranskripsi terbalik menjadi DNA. DNA yang dihasilkan dapat digabungkan dengan genom DNA sel inang. Enzim utama yang bertanggung jawab untuk sintesis DNA dari cetakan RNA disebut reverse transkriptase.
Dalam kasus HIV, reverse transkriptase bertanggung jawab untuk mensintesis untai DNA komplementer (cDNA) pada genom RNA virus. Enzim ribonuklease H kemudian memotong untai RNA, dan reverse transkriptase mensintesis untai komplementer DNA untuk membentuk struktur DNA heliks ganda ("cDNA"). cDNA diintegrasikan ke dalam genom sel inang oleh enzim integrase, yang menyebabkan sel inang menghasilkan protein virus yang berkumpul kembali menjadi partikel virus baru. Kemudian, sel inang yaitu limfosit T mengalami kematian sel terprogram (apoptosis). Namun, pada retrovirus lain, sel inang tetap utuh saat virus keluar dari sel.
Beberapa sel eukariotik mengandung enzim dengan aktivitas transkripsi terbalik yang disebut telomerase. Telomerase adalah reverse transkriptase yang memperpanjang ujung kromosom linier. Telomerase membawa cetakan RNA dari mana ia mensintesis urutan berulang DNA, atau DNA "sampah". Urutan DNA yang berulang ini disebut telomer dan dapat dianggap sebagai "tutup" untuk kromosom. Ini penting karena setiap kali kromosom linier digandakan, itu dipersingkat. Dengan DNA "junk" atau "tutup" di ujung kromosom, pemendekan menghilangkan beberapa urutan berulang yang tidak esensial daripada urutan DNA penyandi protein, yang lebih jauh dari ujung kromosom.
Telomerase sering diaktifkan dalam sel kanker untuk memungkinkan sel kanker menduplikasi genom mereka tanpa kehilangan urutan DNA pengkode protein yang penting. Aktivasi telomerase bisa menjadi bagian dari proses yang memungkinkan sel kanker menjadi abadi. Faktor keabadian kanker melalui pemanjangan telomer karena telomerase telah terbukti terjadi pada 90% dari semua tumor karsinogenik in vivo dengan 10% sisanya menggunakan rute pemeliharaan telomer alternatif yang disebut pemanjangan alternatif telomer (alternative lengthening of telomeres, ALT).
Inhibitor
Inhibitor transkripsi dapat digunakan sebagai antibiotik terhadap patogen, misal bakteri (antibakteri) dan jamur (antijamur). Contoh antibakteri tersebut adalah rifampisin, yang menghambat transkripsi DNA bakteri dengan menghambat RNA polimerase tergantung DNA dengan mengikat subunit beta-nya, sedangkan 8-hidroksikuinolin adalah penghambat transkripsi antijamur. Efek metilasi histon juga dapat bekerja untuk menghambat transkripsi. Produk alami bioaktif yang kuat seperti triptolide yang menghambat transkripsi mamalia melalui penghambatan subunit XPB dari faktor transkripsi umum TFIIH baru-baru ini dilaporkan sebagai konjugat glukosa untuk menargetkan sel kanker hipoksia dengan peningkatan ekspresi transporter glukosa.
= Inhibitor endogen
=Pada vertebrata, sebagian besar promotor gen mengandung pulau CpG dengan banyak situs CpG. Ketika banyak situs CpG promotor gen termetilasi, gen menjadi terhambat (dibungkam). Kanker kolorektal biasanya memiliki 3 hingga 6 mutasi pengemudi dan 33 hingga 66 mutasi genetik hitchhiking atau penumpang. Namun, penghambatan transkripsi (pembungkaman) mungkin lebih penting dalam menyebabkan perkembangan menjadi kanker (dibandingkan kejadian mutasi). Misalnya pada kanker kolorektal, sekitar 600 hingga 800 gen dihambat secara transkripsi oleh metilasi pulau CpG. Penekanan transkripsional pada kanker juga dapat terjadi melalui mekanisme epigenetik lainnya, seperti perubahan ekspresi microRNA. Pada kanker payudara, penekanan transkripsional BRCA1 dapat terjadi lebih sering oleh microRNA-182 yang diekspresikan secara berlebihan daripada oleh hipermetilasi promotor BRCA1.
Referensi
Lihat pula
Replikasi DNA
Translasi
bahan genetik
Pranala luar
Animasi tentang transkripsi di youtube.