Ekspresi gen adalah rangkaian proses penggunaan informasi dari suatu
gen untuk sintesis produk
gen fungsional. Produk-produk tersebut dapat berupa protein, juga
gen penyandi non-protein seperti transfer RNA (tRNA) atau
gen RNA inti kecil (snRNA) yang mana keduanya merupakan produk RNA fungsional.
Proses
Ekspresi gen digunakan oleh semua makhluk hidup termasuk eukariota, prokariota (bakteri dan arkea), dan dimanfaatkan oleh virus - untuk menghasilkan mesin makromolekul untuk kelangsungan hidupnya.
Beberapa tahapan dalam proses
Ekspresi gen yaitu transkripsi, penyambungan atau splicing RNA, translasi, dan modifikasi pasca-translasi dari protein. Regulasi
gen memberikan kontrol sel terhadap struktur dan fungsi, dan merupakan dasar untuk diferensiasi sel, morfogenesis, dan keserbagunaan dan kemampuan beradaptasi dari setiap organisme. Regulasi
gen juga dapat berfungsi sebagai substrat untuk perubahan evolusioner, karena kontrol waktu, lokasi, dan jumlah
Ekspresi gen dapat memiliki efek besar pada fungsi (aksi)
gen dalam sel atau dalam organisme multiseluler.
Dalam genetika,
Ekspresi gen merupakan tingkat paling mendasar yang mana genotipe memunculkan fenotipe, yaitu sifat yang dapat diamati. Kode genetik yang disimpan dalam DNA "ditafsirkan" oleh
Ekspresi gen, dan sifat-sifat
Ekspresi tersebut memunculkan fenotipe organisme. Fenotipe semacam itu sering diekspresikan oleh sintesis protein yang mengendalikan bentuk organisme, atau yang bertindak sebagai enzim yang mengkatalisasi lintasan metabolisme spesifik yang menjadi ciri organisme. Regulasi
Ekspresi gen dengan demikian penting untuk perkembangan suatu organisme.
Mekanisme
= Transkripsi
=
gen adalah bentangan DNA yang menyandikan informasi. DNA genomik terdiri dari dua untai antiparalel dan untai komplementer balik, masing-masing memiliki ujung 5' dan 3'. Terkait dengan
gen, kedua untai tersebut dapat diberi label "untai cetakan," yang berfungsi sebagai cetak biru untuk produksi transkrip RNA, dan "untai penyandi," yang termasuk versi DNA dari sekuens transkrip. "Untai penyandi" secara fisik tidak terlibat dalam proses penyandian karena "untai cetakan"-lah yang dibaca selama transkripsi.
Produksi salinan RNA dari DNA disebut transkripsi, dan dilakukan di dalam nukleus oleh RNA polimerase, yang menambahkan satu nukleotida RNA sekaligus ke untai RNA yang tumbuh sesuai dengan aturan basa yang saling melengkapi. RNA ini komplementer dengan untai cetakan DNA 3 '→ 5', yang dengan sendirinya melengkapi komplemen untai penyandian 5 '→ 3'. Oleh karena itu, untai RNA 5 '→ 3' yang dihasilkan identik dengan untai penyandian DNA dengan pengecualian bahwa timin diganti dengan urasil (U) dalam RNA. Pembacaan untai penyandian DNA "ATG" secara tidak langsung ditranskripsi melalui untai non-coding sebagai "UAC" dalam RNA.
Pada prokariota, transkripsi dilakukan oleh satu jenis RNA polimerase, yang membutuhkan sekuens DNA yang disebut kotak Pribnow serta faktor sigma (faktor σ) untuk memulai transkripsi. Pada eukariota, transkripsi dilakukan oleh tiga jenis RNA polimerase, yang masing-masing membutuhkan sekuens DNA khusus yang disebut promoter dan satu set protein pengikat DNA — faktor transkripsi — untuk memulai proses. RNA polimerase I bertanggung jawab untuk transkripsi
gen RNA ribosom (rRNA). RNA polimerase II (Pol II) mentranskripsikan semua
gen protein-coding tetapi juga beberapa RNA non-coding (misalnya snRNA, snoRNA, atau RNA non-coding panjang). Pol II termasuk domain terminal-C (CTD) yang kaya akan residu serin. Ketika residu ini terfosforilasi, CTD mengikat berbagai faktor protein yang mendorong pematangan dan modifikasi transkrip. RNA polimerase III mentranskripsi RRNA 5S, mentransfer
gen RNA (tRNA), dan beberapa RNA kecil non-coding (misalnya 7SK). Transkripsi berakhir ketika polimerase menemukan sekuens yang disebut terminator.
= Pengolahan RNA
=
Transkripsi
gen penyandi protein prokariotik menghasilkan messenger RNA (mRNA) yang siap untuk ditranslasi menjadi protein, sedangkan transkripsi
gen eukariotik menghasilkan transkrip primer dari RNA (pre-mRNA), yang harus menjalani serangkaian modifikasi untuk menjadi mRNA matang.
Modifikasi termasuk 5'capping, yang merupakan rangkaian reaksi enzimatik dengan menambahkan 7-metilguanosin (m7G) ke ujung 5' pre-mRNA dan dengan demikian melindungi RNA dari degradasi oleh eksonuklease. Tutup m7G kemudian diikat oleh heterodimer kompleks pengikat tutup (CBC20/CBC80), yang membantu ekspor mRNA ke sitoplasma dan juga melindungi RNA dari de-capping.
Modifikasi lain adalah pembelahan dan polyadenylation ujung 3'. Proses ini terjadi jika sekuens sinyal poliadenilasi (5'- AAUAAA-3 ') hadir dalam pre-mRNA, yang biasanya antara sekuens kode protein dan terminator. Pre-mRNA pertama kali dibelah dan kemudian serangkaian ~ 200 adenin (A) ditambahkan untuk membentuk ekor poli(A), yang melindungi RNA dari degradasi. Ekor poli (A) diikat oleh berbagai poly(A)-binding proteins (PABP) yang diperlukan untuk ekspor mRNA dan re-inisiasi translasi.
Modifikasi pre-mRNA eukariotik lainnya adalah penyambungan RNA (RNA splicing). Sebagian besar pre-mRNA eukariotik terdiri dari segmen bergantian yang disebut ekson dan intron. Selama proses penyambungan, kompleks katalitik protein RNA yang dikenal sebagai spliceosome mengkatalisasi dua reaksi trans-esterifikasi, yang membuang intron dan melepaskannya dalam bentuk struktur menjerat, dan kemudian menggabungkan ekson tetangga yang berdekatan bersama-sama. Dalam kasus tertentu, beberapa intron atau ekson dapat dihilangkan atau disimpan dalam mRNA dewasa. Proses disebut juga penyambungan alternatif yang menciptakan serangkaian transkrip berbeda yang berasal dari satu
gen. Karena transkrip ini dapat berpotensi ditranslasi menjadi protein yang berbeda, penyambungan memperluas kompleksitas
Ekspresi gen eukariotik.
Pengolahan RNA yang luas mungkin merupakan keuntungan evolusi yang dimungkinkan oleh inti eukariota. Pada prokariota, transkripsi dan translasi terjadi bersamaan, sementara pada eukariota, membran inti memisahkan dua proses, memberikan waktu untuk proses pengolahan RNA.
= Pematangan RNA non-coding
=
Pada sebagian besar organisme,
gen non-coding (ncRNA) ditranskripsi sebagai prekursor yang menjalani proses lebih lanjut. Pada kasus RNA ribosom (rRNA), mereka sering ditranskripsi sebagai pre-rRNA yang mengandung satu atau lebih rRNA. Pre-rRNA dibelah dan dimodifikasi (2′-O-metilasi dan pembentukan pseudouridin) di lokasi tertentu oleh sekitar 150 spesies RNA kecil yang dibatasi nukleolus, yang disebut snoRNA. SnoRNA berasosiasi dengan protein, membentuk snoRNP. Sementara bagian snoRNA didasarkan pada target RNA dan dengan demikian memposisikan modifikasi pada lokasi yang tepat, bagian protein melakukan reaksi katalitik. Dalam eukariota, khususnya snoRNP yang disebut RNase, MRP memecah pre-rRNA 45S menjadi rRNA 28S, 5.8S, dan 18S. Faktor pengolah rRNA dan faktor pengolah RNA membentuk agregat besar yang disebut nukleolus.
Pada kasus RNA transfer (tRNA), misalnya urutan 5 'dihilangkan oleh RNase P, sedangkan ujung 3' dihilangkan oleh enzim tRNase Z, dan ekor CCA 3 'yang bukan cetakan ditambahkan oleh nukleotidil transferase. Pada kasusRNA-mikro (miRNA), miRNA pertama-tama ditranskripsikan sebagai transkrip primer atau pri-miRNA dengan topi dan ekor poli-A dan diproses menjadi struktur loop-70-nukleotida batang pendek yang dikenal sebagai pre-miRNA dalam inti sel oleh enzim Drosha dan Pasha. Setelah diekspor, kemudian diproses menjadi miRNA matang dalam sitoplasma melalui interaksi dengan Dicer endonuklease, yang juga memulai pembentukan RNA-induced silencing complex (RISC), yang terdiri dari protein Argonaute.
Bahkan snRNA dan snoRNA sendiri menjalani serangkaian modifikasi sebelum menjadi bagian dari kompleks RNP fungsional. Hal ini dilakukan baik dalam nukleoplasma atau di kompartemen khusus yang disebut badan Cajal. Selama proses, basa dimetilasi atau dipseudouridinilasi oleh sekelompok RNA spesifik badan Cajal kecil (scaRNAs), yang secara struktural mirip dengan snoRNA.
= Ekspor RNA
=
Pada eukariota, sebagian besar RNA matang harus diekspor ke sitoplasma dari nukleus. Sementara beberapa fungsi RNA di dalam nukleus, banyak RNA diangkut melalui pori-pori inti dan masuk ke sitosol. Secara khusus ini termasuk semua jenis RNA yang terlibat dalam sintesis protein. Pada beberapa kasus, RNA juga diangkut ke bagian sitoplasma tertentu, seperti sinaps; kemudian ditarik oleh protein motor yang mengikat melalui protein penghubung ke urutan tertentu (disebut "kode pos") pada RNA.
= Translasi
=
Untuk beberapa RNA (RNA non-coding), RNA matang adalah produk
gen akhir. Pada kasus messenger RNA (mRNA), RNA adalah pembawa informasi yang menyandi untuk sintesis satu atau lebih protein. mRNA membawa sekuens protein tunggal (umum pada eukariota) bersifat monosistronik sedangkan mRNA membawa sekuens protein multipel (umum pada prokariota) dikenal sebagai polisistronik.
Setiap mRNA terdiri dari tiga bagian: daerah 5' yang tidak diterjemahkan (5'UTR), daerah penyandi protein atau bingkai pembacaan terbuka (ORF), dan daerah 3' yang tidak diterjemahkan (3'UTR). Wilayah penyandi membawa informasi untuk sintesis protein yang disandikan oleh kode genetik untuk membentuk triplet. Setiap triplet nukleotida dari wilayah penyandi disebut kodon dan sesuai dengan situs pengikatan yang saling melengkapi dengan triplet antikodon dalam RNA transfer. RNA transffer dengan urutan antikodon yang sama selalu membawa jenis asam amino yang identik. Asam amino kemudian dirangkai bersama oleh ribosom sesuai dengan urutan triplet di wilayah penyandi. Ribosom membantu mentransfer RNA untuk mengikat RNA messenger dan mengambil asam amino dari masing-masing RNA transfer dan membuat protein tanpa struktur. Setiap molekul mRNA ditranslasi menjadi banyak molekul protein, rata-rata ~ 2800 pada mamalia.
Pada translasi prokariota, umumnya terjadi pada titik transkripsi (ko-transkripsi), sering menggunakan messenger RNA yang masih dalam proses pembuatan. Pada translasi eukariota dapat terjadi di berbagai daerah sel tergantung di mana protein yang seharusnya ditargetkan. Lokasi utama adalah sitoplasma untuk protein sitoplasma terlarut dan membran retikulum endoplasma untuk protein yang untuk ekspor dari sel atau dimasukkan ke dalam membran sel. Protein yang seharusnya diekspresikan pada retikulum endoplasma dikenali sebagian melalui proses translasi. Proses ini diatur oleh partikel pengenal sinyal — suatu protein yang berikatan dengan ribosom dan mengarahkannya ke retikulum endoplasma ketika menemukan peptida sinyal pada rantai asam amino yang baru tumbuh.
= Pelipatan
=
Polipeptida terlipat menjadi struktur tiga dimensi karakteristik dan fungsional dari koil acak. Setiap protein terdapat sebagai polipeptida terbuka atau koil acak ketika ditranslasi dari sekuens mRNA menjadi rantai linier asam amino. Kemudian, asam amino berinteraksi satu sama lain untuk menghasilkan struktur tiga dimensi yang terdefinisi dengan baik, protein terlipat (sisi kanan gambar) yang dikenal sebagai keadaan asli. Struktur tiga dimensi yang dihasilkan ditentukan oleh urutan asam amino (dogma Anfinsen).
Struktur tiga dimensi yang benar sangat penting untuk fungsi, meskipun beberapa bagian protein fungsional dapat tetap terbuka. Kegagalan untuk melipat ke dalam bentuk yang dimaksud biasanya menghasilkan protein tidak aktif dengan sifat yang berbeda, misalnya prion. Beberapa penyakit neurodegeneratif dan penyakit lain diyakini merupakan hasil dari akumulasi protein yang gagal melipat. Banyak alergi disebabkan oleh lipatan protein, karena sistem imun tidak menghasilkan antibodi untuk struktur protein tertentu.
Enzim yang disebut chaperone (kaperon) membantu protein yang baru terbentuk untuk dilipat ke struktur 3 dimensi yang diperlukan untuk berfungsi. Demikian pula, kaperon RNA membantu RNA mencapai bentuk fungsionalnya. Organel yang membantu pelipatan protein pada eukariota adalah retikulum endoplasma.
= Translokasi
=
Protein sekretori dari eukariota atau prokariota harus dipindahkan untuk memasuki jalur sekretori. Protein yang baru disintesis diarahkan ke kanal translokasi eukariotik Sec61 atau prokariotik SecYEG oleh peptida sinyal. Efisiensi sekresi protein pada eukariota sangat tergantung peptida sinyal yang telah digunakan.
= Pengangkutan protein
=
Banyak protein yang dikirimkan untuk bagian lain dari sel selain di sitosol, dan berbagai sekuens pensinyalan atau peptida sinyal digunakan untuk mengarahkan protein ke tempat mereka seharusnya. Pada prokariota, hal ini biasanya proses sederhana karena kompartmentalisasi sel yang terbatas. Namun, pada eukariota ada banyak variasi proses penargetan yang berbeda untuk memastikan protein tiba di organel yang benar.
Tidak semua protein tersisa di dalam sel dan banyak yang diekspor, misalnya enzim pencernaan, hormon, dan protein matriks ekstraseluler. Pada eukariota jalur ekspor berkembang dengan baik dan mekanisme utama untuk ekspor protein ini yaitu translokasi ke retikulum endoplasma, diikuti dengan pengangkutan melalui badan Golgi.
Regulasi
Ekspresi gen mengacu pada kontrol jumlah dan waktu penampilan produk fungsional
gen. Kontrol
Ekspresi sangat penting untuk memungkinkan sel menghasilkan produk
gen yang dibutuhkannya saat dibutuhkan; pada gilirannya, ini memberi sel fleksibilitas untuk beradaptasi dengan lingkungan yang berubah-ubah, sinyal eksternal, kerusakan sel, dan rangsangan lainnya. Secara lebih umum, regulasi
gen memberikan kendali sel atas semua struktur dan fungsi, dan merupakan dasar untuk diferensiasi sel, morfogenesis, dan keserbagunaan dan kemampuan beradaptasi dari setiap organisme.
Banyak istilah digunakan untuk menggambarkan jenis
gen bergantung pada bagaimana mereka diatur seperti:
gen konstitutif adalah
gen yang ditranskripsi secara terus-menerus sebagai lawan dari
gen fakultatif, yang hanya ditranskripsi ketika dibutuhkan.
gen housekeeping adalah
gen yang diperlukan untuk mempertahankan fungsi seluler dasar dan biasanya diekspresikan dalam semua jenis sel organisme. Contohnya termasuk aktin, GAPDH, dan ubiquitin. Beberapa
gen housekeeping ditranskripsi pada tingkat yang relatif konstan dan
gen ini dapat digunakan sebagai titik referensi dalam percobaan untuk mengukur tingkat
Ekspresi gen lain.
gen fakultatif adalah
gen yang hanya ditranskripsikan bila diperlukan sebagai lawan dari
gen konstitutif.
gen yang diinduksi adalah
gen yang ekspresinya responsif terhadap perubahan lingkungan atau tergantung pada posisi dalam siklus sel.
Setiap langkah
Ekspresi gen dapat dimodulasi, dari langkah transkripsi DNA-RNA ke modifikasi protein pasca-translasi. Stabilitas produk
gen akhir, apakah itu RNA atau protein, juga berkontribusi pada tingkat
Ekspresi gen — produk yang tidak stabil menghasilkan tingkat
Ekspresi rendah. Secara umum
Ekspresi gen diatur melalui perubahan dalam jumlah dan jenis interaksi antara molekul yang secara kolektif mempengaruhi transkripsi DNA dan translasi RNA.
Beberapa contoh sederhana di mana
Ekspresi gen penting adalah:
Kontrol
Ekspresi insulin sehingga memberi sinyal untuk regulasi glukosa darah.
Inaktivasi kromosom X pada mamalia betina untuk mencegah "overdosis"
gen yang dikandungnya.
Tingkat
Ekspresi cyclin mengontrol perkembangan melalui siklus sel eukariotik.
= Regulasi transkripsional
=
Regulasi transkripsi dapat dipecah menjadi tiga jalur pengaruh utama; genetik (interaksi langsung dari faktor kontrol dengan
gen), interaksi modulasi faktor kontrol dengan mesin transkripsi, dan epigenetik (perubahan non-sekuens dalam struktur DNA yang memengaruhi transkripsi).
Interaksi langsung dengan DNA merupakan metode paling sederhana dan paling langsung dimana protein mengubah tingkat transkripsi.
gen sering memiliki beberapa situs pengikatan protein di sekitar wilayah penyandi dengan fungsi spesifik mengatur transkripsi. Terdapat banyak kelas situs pengikatan DNA resmi yang dikenal sebagai enhancer, insulator, dan silencer. Mekanisme untuk mengatur transkripsi sangat bervariasi, dari memblokir situs pengikatan kunci pada DNA untuk RNA polimerase hingga bertindak sebagai aktivator dan mempromosikan transkripsi dengan membantu pengikatan RNA polimerase.
Aktivitas faktor-faktor transkripsi dimodulasi lebih lanjut oleh sinyal-sinyal intraseluler yang menyebabkan modifikasi protein pasca-translasi termasuk fosforilasi, asetilasi, atau glikosilasi. Perubahan-perubahan ini memengaruhi kemampuan faktor transkripsi untuk mengikat, secara langsung atau tidak langsung ke DNA promotor, untuk merekrut RNA polimerase, atau untuk mendukung perpanjangan molekul RNA yang baru disintesis.
Membran inti pada eukariota memungkinkan pengaturan lebih lanjut dari faktor-faktor transkripsi dengan durasi kehadirannys dalam nukleus, yang diatur oleh perubahan reversibel dalam struktur mereka dan dengan mengikat protein lain. Rangsangan lingkungan atau sinyal endokrin dapat menyebabkan modifikasi protein pengatur memunculkan kaskade sinyal intraseluler, yang menghasilkan regulasi
Ekspresi gen.
Baru-baru ini telah menjadi jelas bahwa ada pengaruh signifikan efek spesifik sekuens non-DNA pada transkripsi. Efek ini disebut sebagai epigenetik dan melibatkan struktur urutan tinggi dari DNA, protein pengikat DNA non-sekuens spesifik, dan modifikasi kimiawi dari DNA. Secara umum efek epigenetik mengubah aksesibilitas DNA menjadi protein sehingga memodulasi transkripsi.
Metilasi DNA adalah mekanisme luas untuk pengaruh epigenetik pada
Ekspresi gen dan terlihat pada bakteri dan eukariota serta memiliki peran dalam penghilangan transkripsi yang diwariskan dan regulasi transkripsi. Dalam eukariota, struktur kromatin yang dikendalikan oleh kode histon, mengatur akses ke DNA dengan dampak signifikan pada
Ekspresi gen di daerah eukromatin dan heterokromatin.
= Regulasi transkripsional pada kanker
=
Sebagian besar promotor
gen mengandung pulau CpG dengan banyak situs CpG. Ketika banyak situs CpG promotor
gen dimetilasi,
gen menjadi tidak teraktifkan (dihilangkan). Kanker kolorektal biasanya memiliki 3 hingga 6 mutasi
driver dan 33 hingga 66
hitchhiker atau mutasi penumpang. Namun, penghilangan transkripsi mungkin lebih penting daripada mutasi dalam menyebabkan perkembangan menjadi kanker. Sebagai contoh, pada kanker kolorektal, sekitar 600 hingga 800
gen secara transkripsi dihilangkan oleh metilasi pulau CpG (lihat regulasi transkripsi pada kanker). Represi transkripsional pada kanker juga dapat terjadi dengan mekanisme epigenetik lainnya, seperti perubahan
Ekspresi RNA-Mikro. Pada kanker payudara, represi transkripsional BRCA1 dapat terjadi lebih sering oleh microRNA-182 yang diekspresikan secara berlebihan dibandingkan dengan hipermetilasi promotor BRCA1 (lihat
Ekspresi rendah BRCA1 pada kanker payudara dan ovarium).
= Regulasi pasca transkripsional
=
Pada eukariota, ekspor RNA diperlukan sebelum translasi terjadi, dan adanya ekspor inti ini dianggap memberikan kontrol tambahan atas
Ekspresi gen. Semua transpor baik masuk dan keluar dari nukleus melalui pori-pori inti dan transpor dikendalikan oleh berbagai protein impor dan ekspor.
Ekspresi gen yang menyandi protein hanya mungkin jika mRNA yang membawa kode bertahan cukup lama untuk ditranslasi. Dalam sel umumnya, molekul RNA hanya stabil jika secara khusus dilindungi dari degradasi. Degradasi RNA memiliki kepentingan khusus dalam regulasi
Ekspresi dalam sel eukariotik yang mana mRNA harus menempuh jarak yang jauh sebelum ditranslasi. Pada eukariota, RNA distabilkan oleh modifikasi post-transkripsional tertentu, terutama tutup 5' dan ekor poliadenilasi.
Degradasi mRNA yang disengaja digunakan tidak hanya sebagai mekanisme pertahanan dari RNA asing (biasanya dari virus) tetapi juga sebagai rute destabilisasi mRNA. Jika molekul mRNA memiliki sekuens komplementer untuk RNA kecil pengganggu (siRNA) maka ia ditargetkan untuk dihancurkan melalui jalur interferensi RNA.
= Regulasi translasi
=
Regulasi translasi langsung kurang lazim daripada kontrol stabilitas transkripsi atau mRNA, tetapi kadang-kadang digunakan. Penghambatan translasi protein adalah target utama toksin dan antibiotik, sehingga mereka dapat membunuh sel dengan mengabaikan kontrol
Ekspresi gen normalnya. Penghambat sintesis protein misalnya antibiotik neomisin dan risin.
= Degradasi protein
=
Setelah sintesis protein selesai, tingkat
Ekspresi protein itu dapat diturunkan oleh degradasi protein. Terdapat jalur degradasi protein utama di semua prokariota dan eukariota, dengan proteasom merupakan komponen umum. Protein yang tidak dibutuhkan atau rusak sering diberi label untuk degradasi dengan menambahkan ubiquitin.
Pengukuran
= Profil RNA di Wikipedia
=
Profil seperti ini ditemukan untuk hampir semua protein yang terdaftar di Wikipedia. Profil dihasilkan oleh organisasi-organisasi seperti Genomics Institute dari Novartis Research Foundation dan European Bioinformatics Institute. Informasi tambahan dapat ditemukan dengan mencari di basis data (untuk contoh transporter GLUT4 yang digambarkan di sini, lihat kutipan). Profil-profil ini menunjukkan tingkat
Ekspresi DNA (dan produksi RNA) dari protein tertentu dalam jaringan tertentu, dan diberi kode warna sesuai dalam gambar yang terletak di Kotak Protein di sisi kanan setiap halaman Wikipedia.
= Kuantifikasi protein
=
Untuk
gen yang menyandi protein, tingkat
Ekspresi dapat secara langsung dinilai dengan sejumlah metode dengan beberapa analogi yang jelas dengan teknik kuantifikasi mRNA.
Teknik yang paling sering digunakan untuk kuantifikasi protein yaitu Western blot terhadap protein yang ingin diamati — metode ini memberikan informasi tentang ukuran protein selain identitasnya. Sampel (sering lisat seluler) dipisahkan pada gel poliakrilamida, ditransfer ke membran dan kemudian diperiksa dengan antibodi terhadap protein yang diinginkan. Antibodi dapat dikonjugasikan ke fluorofor atau horseradish peroxidase untuk pencitraan dan/atau kuantifikasi. Metode menggunakan basis gel membuat kuantifikasi kurang akurat, tetapi memiliki keuntungan untuk dapat mengidentifikasi modifikasi protein selanjutnya, misalnya proteolisis atau ubiquitination, dari perubahan ukuran.
= Lokalisasi
=
Analisis
Ekspresi juga dapat ditentukan melalui lokalisasi. mRNA dapat dideteksi dengan untaian mRNA komplementer yang sesuai dan protein dapat dideteksi melalui antibodi berlabel. Sampel yang diperiksa kemudian diamati dengan mikroskop untuk mengidentifikasi lokasi mRNA atau protein.
Dengan mengganti
gen dengan versi baru yang menyatu dengan penanda protein berpendar hijau (atau serupa),
Ekspresi dapat langsung diukur dalam sel hidup. Hal ini dilakukan dengan pencitraan menggunakan mikroskop fluoresensi. Kloning protein yang tergabung GFP ke lokasi asalnya dalam genom sangat sulit tanpa memengaruhi level
Ekspresi sehingga metode ini sering tidak dapat digunakan untuk mengukur
Ekspresi gen endogen. Namun, teknik ini banyak digunakan untuk mengukur
Ekspresi gen yang secara artifisial dimasukkan ke dalam sel, misalnya melalui vektor
Ekspresi. Penting untuk dicatat bahwa dengan menggabungkan protein target ke reporter fluoresen, perilaku protein, termasuk lokalisasi seluler dan tingkat
Ekspresi, dapat berubah secara signifikan.
ELISA bekerja menggunakan antibodi yang diimobilisasi pada pelat mikrotiter untuk menangkap protein yang diinginkan dari sampel yang ditambahkan ke dalam sumuran. Dengan menggunakan antibodi pendeteksi yang terkonjugasi pada suatu enzim atau fluorofor, jumlah protein yang terikat dapat diukur secara akurat dengan deteksi fluorometrik atau kolorimetrik. Proses deteksi sangat mirip dengan Western blot, tetapi dengan menghindari tahap penggunaan gel, sehingga dapat dicapai kuantifikasi yang lebih akurat.
Sistem
Ekspresi adalah sistem yang dirancang khusus untuk menghasilkan produk
gen yang diinginkan. Produk tersebut biasanya protein, meskipun mungkin juga RNA, seperti tRNA atau ribozim. Sistem
Ekspresi terdiri dari
gen, yang biasanya disandikan oleh DNA, dan mesin molekuler yang diperlukan untuk mentranskripsi DNA menjadi mRNA dan menerjemahkan mRNA menjadi protein menggunakan reagen yang disediakan. Virus merupakan contoh yang sangat baik di mana mereka mereplikasi dengan menggunakan sel inang sebagai sistem
Ekspresi untuk protein dan genom virus.
= Ekspresi yang dapat diinduksi
=
Doksisiklin juga digunakan dalam aktivasi transkripsional terkontrol tetrasiklin "Tet-on" dan "Tet-off" untuk mengatur
Ekspresi transgen dalam organisme dan kultur sel.
= Di alam
=
Selain alat biologis ini, konfigurasi DNA tertentu yang diamati secara alami (
gen, promotor, peningkat, penekan) dan mesin yang terkait itu sendiri disebut sebagai sistem
Ekspresi. Istilah ini biasanya digunakan dalam kasus yang mana
gen atau kelompok
gen diaktifkan dalam kondisi yang terdefinisi dengan baik, misalnya sistem
Ekspresi pengalih represor sederhana dalam fag Lambda dan sistem operator lac pada bakteri. Beberapa sistem
Ekspresi alami secara langsung digunakan atau dimodifikasi dan digunakan untuk sistem
Ekspresi buatan seperti sistem
Ekspresi Tet-on dan Tet-off.
Jejaring gen
gen kadang-kadang dianggap sebagai simpul dalam jejaring, dengan input menjadi protein seperti faktor transkripsi, dan output menjadi tingkat
Ekspresi gen. Nodus itu sendiri melakukan suatu fungsi, dan operasi dari fungsi-fungsi ini telah ditafsirkan sebagai melakukan semacam pengolahan informasi di dalam sel dan menentukan perilaku seluler.
Jejaring
gen juga dapat dibangun tanpa merumuskan model sebab-akibat yang eksplisit. Hal ini sering terjadi ketika merakit jejaring dari sekelompok data
Ekspresi besar. Kovarian dan korelasi
Ekspresi dihitung pada sampel kasus dan pengukuran yang besar (sering kali data transkripom atau proteom). Sumber variasi dapat berupa eksperimental atau alami (observasional). Terdapat beberapa cara untuk membangun jejaring
Ekspresi gen, tetapi satu pendekatan yang umum adalah menghitung matriks semua korelasi
Ekspresi pasangan di seluruh kondisi, titik waktu, atau individu dan mengubah matriks (setelah ambang batas pada beberapa nilai batas) menjadi representasi grafis di mana nodus mewakili
gen, transkrip, atau protein dan tepi yang menghubungkan nodus ini mewakili kekuatan hubungan (lihat [1] ).
Teknik dan alat
Teknik eksperimental berikut digunakan untuk mengukur
Ekspresi gen dan tertulis dalam urutan kronologis, dimulai dengan teknologi yang lebih tua. Mereka dibagi menjadi dua kelompok berdasarkan tingkat multipleksitasnya.
Teknik low-to-mid-plex:
gen reporter
Northern blot
Western blot
Hibridisasi in-fluoresen in situ (FISH)
Reverse transcription PCR
Teknik plex-tinggi:
SAGE
Microarray DNA
Tilling array
RNA-Sequencing
Ekspresi gen omnibus (GEO) di NCBI
Expression Atlas di EBI
Basis Data
Ekspresi gen Mouse di Laboratorium Jackson
CollecTF: basis data situs yang mengikat faktor transkripsi yang divalidasi secara eksperimental pada Bakteria.
COLOMBOS: kumpulan compendia
Ekspresi bakteri.
Many Microbe Microarrays Database: data Affymetrix mikrobial
Referensi