- Source: Trifluoroacetone
Trifluoroacetone (1,1,1-trifluoroacetone) is an organofluorine compound with the chemical formula CF3C(O)CH3. The compound is a colorless liquid with chloroform-like odour.
Preparation, reactions, uses
Trifluoroacetone is produced from trifluoroacetoacetic acid, which is synthesized by condensation of ethyl trifluoroacetate and ethyl acetate:
CF3CO2C2H5 + CH3CO2C2H5 → CF3C(O)CH2CO2C2H5 + C2H5OH
Hydrolysis of the keto-ester, followed by decarboxylation affords trifluoroacetone:
CF3C(O)CH2CO2C2H5 + H2O → CF3C(O)CH2CO2H + C2H5OH
CF3C(O)CH2CO2H → CF3C(O)CH3 + CO2
Alternatively, addition of methylmagnesium iodide to trifluoroacetic acid gives the ketone according to this idealized equation:
CF3CO2H + 2 CH3MgI → CF3C(O)CH3 + MgI2 + CH4 + MgO
Reactions
Many studies report on the reactions of trifluoroacetone. It is less prone to hydrate than hexafluoroacetone and more electrophilic than acetone itself. Unlike both of those ketones, trifluoroacetone is prochiral.
Hydrogenation of trifluoroacetone over platinum catalyst gives trifluoroisopropanol. The reduction can also be achieved asymmetrically. Similarly, alkylation with Grignard reagents provides a route to tertiary alcohols. Alkylation and arylation can be achieved using malonate anions and arenes/AlCl3, respectively.
Trifluoroacetone has been converted to the dioxirane using oxone.
It serves as an oxidizing agent in Oppenauer oxidation.
Trifluoracetone is also used in a synthesis of 2-trifluoromethyl-7-azaindoles starting with 2,6-dihalopyridines. The derived chiral imine is used to prepare enantiopure α-trifluoromethyl alanines and diamines by a Strecker reaction followed by either nitrile hydrolysis or reduction.
See also
Hexafluoroacetone
Trifluoroacetic acid – also abbreviated TFA
References
External links
Safety sheet
Kata Kunci Pencarian:
- Trifluoroacetone
- Thenoyltrifluoroacetone
- TFA
- Trifluoroacetic acid
- Acetoacetic acid
- Hexafluoroacetylacetone
- List of gases
- Hexafluoroacetone
- B. E. Vijayam
- Stahl oxidation