- Source: Unit function
In number theory, the unit function is a completely multiplicative function on the positive integers defined as:
ε
(
n
)
=
{
1
,
if
n
=
1
0
,
if
n
≠
1
{\displaystyle \varepsilon (n)={\begin{cases}1,&{\mbox{if }}n=1\\0,&{\mbox{if }}n\neq 1\end{cases}}}
It is called the unit function because it is the identity element for Dirichlet convolution.
It may be described as the "indicator function of 1" within the set of positive integers. It is also written as u(n) (not to be confused with μ(n), which generally denotes the Möbius function).
See also
Möbius inversion formula
Heaviside step function
Kronecker delta
References
Kata Kunci Pencarian:
- Fungsi tangga Heaviside
- PlayStation 2
- Subrutin
- Direktorat Jenderal Perbendaharaan
- Garmin G1000
- HIV
- Lokomotif CC206
- Kodon stop
- Apoptosis
- BPJS Kesehatan
- Unit function
- Heaviside step function
- Dirac delta function
- Rectifier (neural networks)
- Function (computer programming)
- Rectangular function
- Swish function
- Kronecker delta
- Trigonometric functions
- Implicit function