Dual Hahn polynomials GudangMovies21 Rebahinxxi LK21

    In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice



    x
    (
    s
    )
    =
    s
    (
    s
    +
    1
    )


    {\displaystyle x(s)=s(s+1)}

    and are defined as





    w

    n


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )
    =



    (
    a

    b
    +
    1

    )

    n


    (
    a
    +
    c
    +
    1

    )

    n




    n
    !








    3



    F

    2


    (

    n
    ,
    a

    s
    ,
    a
    +
    s
    +
    1
    ;
    a

    b
    +
    a
    ,
    a
    +
    c
    +
    1
    ;
    1
    )


    {\displaystyle w_{n}^{(c)}(s,a,b)={\frac {(a-b+1)_{n}(a+c+1)_{n}}{n!}}{}_{3}F_{2}(-n,a-s,a+s+1;a-b+a,a+c+1;1)}


    for



    n
    =
    0
    ,
    1
    ,
    .
    .
    .
    ,
    N

    1


    {\displaystyle n=0,1,...,N-1}

    and the parameters



    a
    ,
    b
    ,
    c


    {\displaystyle a,b,c}

    are restricted to






    1
    2


    <
    a
    <
    b
    ,

    |

    c

    |

    <
    1
    +
    a
    ,
    b
    =
    a
    +
    N


    {\displaystyle -{\frac {1}{2}}
    .
    Note that



    (
    u

    )

    k




    {\displaystyle (u)_{k}}

    is the rising factorial, otherwise known as the Pochhammer symbol, and








    3



    F

    2


    (

    )


    {\displaystyle {}_{3}F_{2}(\cdot )}

    is the generalized hypergeometric functions
    Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.


    Orthogonality


    The dual Hahn polynomials have the orthogonality condition







    s
    =
    a


    b

    1



    w

    n


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )

    w

    m


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )
    ρ
    (
    s
    )
    [
    Δ
    x
    (
    s



    1
    2


    )
    ]
    =

    δ

    n
    m



    d

    n


    2




    {\displaystyle \sum _{s=a}^{b-1}w_{n}^{(c)}(s,a,b)w_{m}^{(c)}(s,a,b)\rho (s)[\Delta x(s-{\frac {1}{2}})]=\delta _{nm}d_{n}^{2}}


    for



    n
    ,
    m
    =
    0
    ,
    1
    ,
    .
    .
    .
    ,
    N

    1


    {\displaystyle n,m=0,1,...,N-1}

    . Where



    Δ
    x
    (
    s
    )
    =
    x
    (
    s
    +
    1
    )

    x
    (
    s
    )


    {\displaystyle \Delta x(s)=x(s+1)-x(s)}

    ,




    ρ
    (
    s
    )
    =



    Γ
    (
    a
    +
    s
    +
    1
    )
    Γ
    (
    c
    +
    s
    +
    1
    )


    Γ
    (
    s

    a
    +
    1
    )
    Γ
    (
    b

    s
    )
    Γ
    (
    b
    +
    s
    +
    1
    )
    Γ
    (
    s

    c
    +
    1
    )





    {\displaystyle \rho (s)={\frac {\Gamma (a+s+1)\Gamma (c+s+1)}{\Gamma (s-a+1)\Gamma (b-s)\Gamma (b+s+1)\Gamma (s-c+1)}}}


    and





    d

    n


    2


    =



    Γ
    (
    a
    +
    c
    +
    n
    +
    a
    )


    n
    !
    (
    b

    a

    n

    1
    )
    !
    Γ
    (
    b

    c

    n
    )



    .


    {\displaystyle d_{n}^{2}={\frac {\Gamma (a+c+n+a)}{n!(b-a-n-1)!\Gamma (b-c-n)}}.}



    Numerical instability


    As the value of



    n


    {\displaystyle n}

    increases, the values that the discrete polynomials obtain also increases. As a result, to obtain numerical stability in calculating the polynomials you would use the renormalized dual Hahn polynomial as defined as








    w
    ^




    n


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )
    =

    w

    n


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )





    ρ
    (
    s
    )


    d

    n


    2




    [
    Δ
    x
    (
    s



    1
    2


    )
    ]




    {\displaystyle {\hat {w}}_{n}^{(c)}(s,a,b)=w_{n}^{(c)}(s,a,b){\sqrt {{\frac {\rho (s)}{d_{n}^{2}}}[\Delta x(s-{\frac {1}{2}})]}}}


    for



    n
    =
    0
    ,
    1
    ,
    .
    .
    .
    ,
    N

    1


    {\displaystyle n=0,1,...,N-1}

    .
    Then the orthogonality condition becomes







    s
    =
    a


    b

    1






    w
    ^




    n


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )




    w
    ^




    m


    (
    c
    )


    (
    s
    ,
    a
    ,
    b
    )
    =

    δ

    m
    ,
    n




    {\displaystyle \sum _{s=a}^{b-1}{\hat {w}}_{n}^{(c)}(s,a,b){\hat {w}}_{m}^{(c)}(s,a,b)=\delta _{m,n}}


    for



    n
    ,
    m
    =
    0
    ,
    1
    ,
    .
    .
    .
    ,
    N

    1


    {\displaystyle n,m=0,1,...,N-1}



    Relation to other polynomials


    The Hahn polynomials,




    h

    n


    (
    x
    ,
    N
    ;
    α
    ,
    β
    )


    {\displaystyle h_{n}(x,N;\alpha ,\beta )}

    , is defined on the uniform lattice



    x
    (
    s
    )
    =
    s


    {\displaystyle x(s)=s}

    , and the parameters



    a
    ,
    b
    ,
    c


    {\displaystyle a,b,c}

    are defined as



    a
    =
    (
    α
    +
    β
    )

    /

    2
    ,
    b
    =
    a
    +
    N
    ,
    c
    =
    (
    β

    α
    )

    /

    2


    {\displaystyle a=(\alpha +\beta )/2,b=a+N,c=(\beta -\alpha )/2}

    . Then setting



    α
    =
    β
    =
    0


    {\displaystyle \alpha =\beta =0}

    the Hahn polynomials become the Chebyshev polynomials. Note that the dual Hahn polynomials have a q-analog with an extra parameter q known as the dual q-Hahn polynomials.
    Racah polynomials are a generalization of dual Hahn polynomials.


    References


    Zhu, Hongqing (2007), "Image analysis by discrete orthogonal dual Hahn moments" (PDF), Pattern Recognition Letters, 28 (13): 1688–1704, doi:10.1016/j.patrec.2007.04.013
    Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2 (1–2): 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.

Kata Kunci Pencarian:

dual hahn polynomials
(PDF) ON HAHN POLYNOMIALS AND CONTINUOUS DUAL HAHN POLYNOMIALS

(PDF) ON HAHN POLYNOMIALS AND CONTINUOUS DUAL HAHN POLYNOMIALS

(PDF) Some New Generating Functions for -Hahn Polynomials

(PDF) Some New Generating Functions for -Hahn Polynomials

(PDF) Threefold Symmetric Hahn-Classical Multiple Orthogonal Polynomials

(PDF) Threefold Symmetric Hahn-Classical Multiple Orthogonal Polynomials

The polynomials in dual problem for DOA estimation. | Download ...

The polynomials in dual problem for DOA estimation. | Download ...

(PDF) On the continuous dual Hahn process

(PDF) On the continuous dual Hahn process

Computation region of radial dual Hahn moments | Download Scientific ...

Computation region of radial dual Hahn moments | Download Scientific ...

real analysis - Pairing, Hahn-Banach theorem - Mathematics Stack Exchange

real analysis - Pairing, Hahn-Banach theorem - Mathematics Stack Exchange

(PDF) Dual $-1$ Hahn polynomials: “Classical” polynomials beyond the ...

(PDF) Dual $-1$ Hahn polynomials: “Classical” polynomials beyond the ...

(PDF) Perfect state transfer in two dimensions and the bivariate dual ...

(PDF) Perfect state transfer in two dimensions and the bivariate dual ...

(PDF) Asymptotic relations between the Hahn-type polynomials and ...

(PDF) Asymptotic relations between the Hahn-type polynomials and ...

The polynomials in dual problem for DOA estimation. | Download ...

The polynomials in dual problem for DOA estimation. | Download ...

Hankel Determinants, Hahn Polynomials, and a Formula of Krattenthaler ...

Hankel Determinants, Hahn Polynomials, and a Formula of Krattenthaler ...