legendre transform integral transform

      Legendre transform (integral transform) GudangMovies21 Rebahinxxi LK21

      In mathematics, Legendre transform" target="_blank">transform is an integral transform" target="_blank">transform named after the mathematician Adrien-Marie Legendre, which uses Legendre polynomials




      P

      n


      (
      x
      )


      {\displaystyle P_{n}(x)}

      as kernels of the transform" target="_blank">transform. Legendre transform" target="_blank">transform is a special case of Jacobi transform" target="_blank">transform.
      The Legendre transform" target="_blank">transform of a function



      f
      (
      x
      )


      {\displaystyle f(x)}

      is







      J



      n


      {
      f
      (
      x
      )
      }
      =



      f
      ~



      (
      n
      )
      =




      1


      1



      P

      n


      (
      x
      )

      f
      (
      x
      )

      d
      x


      {\displaystyle {\mathcal {J}}_{n}\{f(x)\}={\tilde {f}}(n)=\int _{-1}^{1}P_{n}(x)\ f(x)\ dx}


      The inverse Legendre transform" target="_blank">transform is given by







      J



      n



      1


      {



      f
      ~



      (
      n
      )
      }
      =
      f
      (
      x
      )
      =



      n
      =
      0








      2
      n
      +
      1

      2





      f
      ~



      (
      n
      )

      P

      n


      (
      x
      )


      {\displaystyle {\mathcal {J}}_{n}^{-1}\{{\tilde {f}}(n)\}=f(x)=\sum _{n=0}^{\infty }{\frac {2n+1}{2}}{\tilde {f}}(n)P_{n}(x)}



      Associated Legendre transform" target="_blank">transform


      Associated Legendre transform" target="_blank">transform is defined as







      J



      n
      ,
      m


      {
      f
      (
      x
      )
      }
      =



      f
      ~



      (
      n
      ,
      m
      )
      =




      1


      1


      (
      1


      x

      2



      )


      m

      /

      2



      P

      n


      m


      (
      x
      )

      f
      (
      x
      )

      d
      x


      {\displaystyle {\mathcal {J}}_{n,m}\{f(x)\}={\tilde {f}}(n,m)=\int _{-1}^{1}(1-x^{2})^{-m/2}P_{n}^{m}(x)\ f(x)\ dx}


      The inverse Legendre transform" target="_blank">transform is given by







      J



      n
      ,
      m



      1


      {



      f
      ~



      (
      n
      ,
      m
      )
      }
      =
      f
      (
      x
      )
      =



      n
      =
      0








      2
      n
      +
      1

      2





      (
      n

      m
      )
      !


      (
      n
      +
      m
      )
      !






      f
      ~



      (
      n
      ,
      m
      )
      (
      1


      x

      2



      )

      m

      /

      2



      P

      n


      m


      (
      x
      )


      {\displaystyle {\mathcal {J}}_{n,m}^{-1}\{{\tilde {f}}(n,m)\}=f(x)=\sum _{n=0}^{\infty }{\frac {2n+1}{2}}{\frac {(n-m)!}{(n+m)!}}{\tilde {f}}(n,m)(1-x^{2})^{m/2}P_{n}^{m}(x)}



      Some Legendre transform" target="_blank">transform pairs




      References

    Kata Kunci Pencarian: legendre transform integral transform