• Source: Complex normal distribution
    • In probability theory, the family of complex normal distributions, denoted





      C
      N




      {\displaystyle {\mathcal {CN}}}

      or






      N




      C





      {\displaystyle {\mathcal {N}}_{\mathcal {C}}}

      , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix



      Γ


      {\displaystyle \Gamma }

      , and the relation matrix



      C


      {\displaystyle C}

      . The standard complex normal is the univariate distribution with



      μ
      =
      0


      {\displaystyle \mu =0}

      ,



      Γ
      =
      1


      {\displaystyle \Gamma =1}

      , and



      C
      =
      0


      {\displaystyle C=0}

      .
      An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean:



      μ
      =
      0


      {\displaystyle \mu =0}

      and



      C
      =
      0


      {\displaystyle C=0}

      . This case is used extensively in signal processing, where it is sometimes referred to as just complex normal in the literature.


      Definitions




      = Complex standard normal random variable

      =
      The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable



      Z


      {\displaystyle Z}

      whose real and imaginary parts are independent normally distributed random variables with mean zero and variance



      1

      /

      2


      {\displaystyle 1/2}

      .: p. 494 : pp. 501  Formally,

      where



      Z



      C
      N


      (
      0
      ,
      1
      )


      {\displaystyle Z\sim {\mathcal {CN}}(0,1)}

      denotes that



      Z


      {\displaystyle Z}

      is a standard complex normal random variable.


      = Complex normal random variable

      =
      Suppose



      X


      {\displaystyle X}

      and



      Y


      {\displaystyle Y}

      are real random variables such that



      (
      X
      ,
      Y

      )


      T





      {\displaystyle (X,Y)^{\mathrm {T} }}

      is a 2-dimensional normal random vector. Then the complex random variable



      Z
      =
      X
      +
      i
      Y


      {\displaystyle Z=X+iY}

      is called complex normal random variable or complex Gaussian random variable.: p. 500 


      = Complex standard normal random vector

      =
      A n-dimensional complex random vector




      Z

      =
      (

      Z

      1


      ,

      ,

      Z

      n



      )


      T





      {\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }}

      is a complex standard normal random vector or complex standard Gaussian random vector if its components are independent and all of them are standard complex normal random variables as defined above.: p. 502 : pp. 501 
      That




      Z



      {\displaystyle \mathbf {Z} }

      is a standard complex normal random vector is denoted




      Z




      C
      N


      (
      0
      ,


      I


      n


      )


      {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,{\boldsymbol {I}}_{n})}

      .


      = Complex normal random vector

      =
      If




      X

      =
      (

      X

      1


      ,

      ,

      X

      n



      )


      T





      {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\mathrm {T} }}

      and




      Y

      =
      (

      Y

      1


      ,

      ,

      Y

      n



      )


      T





      {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\mathrm {T} }}

      are random vectors in





      R


      n




      {\displaystyle \mathbb {R} ^{n}}

      such that



      [

      X

      ,

      Y

      ]


      {\displaystyle [\mathbf {X} ,\mathbf {Y} ]}

      is a normal random vector with



      2
      n


      {\displaystyle 2n}

      components. Then we say that the complex random vector





      Z

      =

      X

      +
      i

      Y




      {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} \,}


      is a complex normal random vector or a complex Gaussian random vector.


      Mean, covariance, and relation


      The complex Gaussian distribution can be described with 3 parameters:




      μ
      =
      E

      [

      Z

      ]
      ,

      Γ
      =
      E

      [
      (

      Z


      μ
      )
      (


      Z



      μ

      )


      H



      ]
      ,

      C
      =
      E

      [
      (

      Z


      μ
      )
      (

      Z


      μ

      )


      T



      ]
      ,


      {\displaystyle \mu =\operatorname {E} [\mathbf {Z} ],\quad \Gamma =\operatorname {E} [(\mathbf {Z} -\mu )({\mathbf {Z} }-\mu )^{\mathrm {H} }],\quad C=\operatorname {E} [(\mathbf {Z} -\mu )(\mathbf {Z} -\mu )^{\mathrm {T} }],}


      where





      Z



      T





      {\displaystyle \mathbf {Z} ^{\mathrm {T} }}

      denotes matrix transpose of




      Z



      {\displaystyle \mathbf {Z} }

      , and





      Z



      H





      {\displaystyle \mathbf {Z} ^{\mathrm {H} }}

      denotes conjugate transpose.: p. 504 : pp. 500 
      Here the location parameter



      μ


      {\displaystyle \mu }

      is a n-dimensional complex vector; the covariance matrix



      Γ


      {\displaystyle \Gamma }

      is Hermitian and non-negative definite; and, the relation matrix or pseudo-covariance matrix



      C


      {\displaystyle C}

      is symmetric. The complex normal random vector




      Z



      {\displaystyle \mathbf {Z} }

      can now be denoted as




      Z






      C
      N


      (
      μ
      ,

      Γ
      ,

      C
      )
      .


      {\displaystyle \mathbf {Z} \ \sim \ {\mathcal {CN}}(\mu ,\ \Gamma ,\ C).}

      Moreover, matrices



      Γ


      {\displaystyle \Gamma }

      and



      C


      {\displaystyle C}

      are such that the matrix




      P
      =


      Γ
      ¯





      C



      H




      Γ


      1


      C


      {\displaystyle P={\overline {\Gamma }}-{C}^{\mathrm {H} }\Gamma ^{-1}C}


      is also non-negative definite where





      Γ
      ¯




      {\displaystyle {\overline {\Gamma }}}

      denotes the complex conjugate of



      Γ


      {\displaystyle \Gamma }

      .


      Relationships between covariance matrices



      As for any complex random vector, the matrices



      Γ


      {\displaystyle \Gamma }

      and



      C


      {\displaystyle C}

      can be related to the covariance matrices of




      X

      =

      (

      Z

      )


      {\displaystyle \mathbf {X} =\Re (\mathbf {Z} )}

      and




      Y

      =

      (

      Z

      )


      {\displaystyle \mathbf {Y} =\Im (\mathbf {Z} )}

      via expressions










      V

      X
      X



      E

      [
      (

      X



      μ

      X


      )
      (

      X



      μ

      X



      )


      T



      ]
      =



      1
      2



      Re

      [
      Γ
      +
      C
      ]
      ,


      V

      X
      Y



      E

      [
      (

      X



      μ

      X


      )
      (

      Y



      μ

      Y



      )


      T



      ]
      =



      1
      2



      Im

      [

      Γ
      +
      C
      ]
      ,






      V

      Y
      X



      E

      [
      (

      Y



      μ

      Y


      )
      (

      X



      μ

      X



      )


      T



      ]
      =



      1
      2



      Im

      [
      Γ
      +
      C
      ]
      ,



      V

      Y
      Y



      E

      [
      (

      Y



      μ

      Y


      )
      (

      Y



      μ

      Y



      )


      T



      ]
      =



      1
      2



      Re

      [
      Γ

      C
      ]
      ,






      {\displaystyle {\begin{aligned}&V_{XX}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma +C],\quad V_{XY}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [-\Gamma +C],\\&V_{YX}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [\Gamma +C],\quad \,V_{YY}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma -C],\end{aligned}}}


      and conversely









      Γ
      =

      V

      X
      X


      +

      V

      Y
      Y


      +
      i
      (

      V

      Y
      X




      V

      X
      Y


      )
      ,





      C
      =

      V

      X
      X




      V

      Y
      Y


      +
      i
      (

      V

      Y
      X


      +

      V

      X
      Y


      )
      .






      {\displaystyle {\begin{aligned}&\Gamma =V_{XX}+V_{YY}+i(V_{YX}-V_{XY}),\\&C=V_{XX}-V_{YY}+i(V_{YX}+V_{XY}).\end{aligned}}}



      Density function


      The probability density function for complex normal distribution can be computed as








      f
      (
      z
      )



      =


      1


      π

      n




      det
      (
      Γ
      )
      det
      (
      P
      )






      exp


      {




      1
      2




      (



      (


      z
      ¯





      μ
      ¯



      )




      ,


      (
      z

      μ

      )







      )





      (



      Γ


      C






      C
      ¯






      Γ
      ¯





      )






      1





      (



      z

      μ






      z
      ¯





      μ
      ¯





      )



      }







      =




      det

      (




      P


      1


      ¯




      R





      P


      1


      R

      )

      det
      (

      P


      1


      )


      π

      n







      e


      (
      z

      μ

      )







      P


      1


      ¯


      (
      z

      μ
      )
      +
      Re


      (

      (
      z

      μ

      )





      R







      P


      1


      ¯


      (
      z

      μ
      )

      )



      ,






      {\displaystyle {\begin{aligned}f(z)&={\frac {1}{\pi ^{n}{\sqrt {\det(\Gamma )\det(P)}}}}\,\exp \!\left\{-{\frac {1}{2}}{\begin{pmatrix}({\overline {z}}-{\overline {\mu }})^{\intercal },&(z-\mu )^{\intercal }\end{pmatrix}}{\begin{pmatrix}\Gamma &C\\{\overline {C}}&{\overline {\Gamma }}\end{pmatrix}}^{\!\!-1}\!{\begin{pmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{pmatrix}}\right\}\\[8pt]&={\tfrac {\sqrt {\det \left({\overline {P^{-1}}}-R^{\ast }P^{-1}R\right)\det(P^{-1})}}{\pi ^{n}}}\,e^{-(z-\mu )^{\ast }{\overline {P^{-1}}}(z-\mu )+\operatorname {Re} \left((z-\mu )^{\intercal }R^{\intercal }{\overline {P^{-1}}}(z-\mu )\right)},\end{aligned}}}


      where



      R
      =

      C


      H




      Γ


      1




      {\displaystyle R=C^{\mathrm {H} }\Gamma ^{-1}}

      and



      P
      =


      Γ
      ¯



      R
      C


      {\displaystyle P={\overline {\Gamma }}-RC}

      .


      Characteristic function


      The characteristic function of complex normal distribution is given by




      φ
      (
      w
      )
      =
      exp



      {


      i
      Re

      (



      w
      ¯




      μ
      )




      1
      4





      (





      w
      ¯




      Γ
      w
      +
      Re

      (



      w
      ¯




      C


      w
      ¯


      )


      )




      }


      ,


      {\displaystyle \varphi (w)=\exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}},}


      where the argument



      w


      {\displaystyle w}

      is an n-dimensional complex vector.


      Properties


      If




      Z



      {\displaystyle \mathbf {Z} }

      is a complex normal n-vector,




      A



      {\displaystyle {\boldsymbol {A}}}

      an m×n matrix, and



      b


      {\displaystyle b}

      a constant m-vector, then the linear transform




      A


      Z

      +
      b


      {\displaystyle {\boldsymbol {A}}\mathbf {Z} +b}

      will be distributed also complex-normally:




      Z





      C
      N


      (
      μ
      ,

      Γ
      ,

      C
      )



      A
      Z
      +
      b





      C
      N


      (
      A
      μ
      +
      b
      ,

      A
      Γ

      A


      H



      ,

      A
      C

      A


      T



      )


      {\displaystyle Z\ \sim \ {\mathcal {CN}}(\mu ,\,\Gamma ,\,C)\quad \Rightarrow \quad AZ+b\ \sim \ {\mathcal {CN}}(A\mu +b,\,A\Gamma A^{\mathrm {H} },\,ACA^{\mathrm {T} })}


      If




      Z



      {\displaystyle \mathbf {Z} }

      is a complex normal n-vector, then




      2


      [


      (

      Z


      μ

      )


      H






      P


      1


      ¯


      (

      Z


      μ
      )

      Re



      (


      (

      Z


      μ

      )


      T




      R


      T






      P


      1


      ¯


      (

      Z


      μ
      )


      )




      ]






      χ

      2


      (
      2
      n
      )


      {\displaystyle 2{\Big [}(\mathbf {Z} -\mu )^{\mathrm {H} }{\overline {P^{-1}}}(\mathbf {Z} -\mu )-\operatorname {Re} {\big (}(\mathbf {Z} -\mu )^{\mathrm {T} }R^{\mathrm {T} }{\overline {P^{-1}}}(\mathbf {Z} -\mu ){\big )}{\Big ]}\ \sim \ \chi ^{2}(2n)}


      Central limit theorem. If




      Z

      1


      ,

      ,

      Z

      T




      {\displaystyle Z_{1},\ldots ,Z_{T}}

      are independent and identically distributed complex random variables, then






      T




      (





      1
      T







      t
      =
      1


      T



      Z

      t



      E

      [

      Z

      t


      ]


      )







      d






      C
      N


      (
      0
      ,

      Γ
      ,

      C
      )
      ,



      {\displaystyle {\sqrt {T}}{\Big (}{\tfrac {1}{T}}\textstyle \sum _{t=1}^{T}Z_{t}-\operatorname {E} [Z_{t}]{\Big )}\ {\xrightarrow {d}}\ {\mathcal {CN}}(0,\,\Gamma ,\,C),}


      where



      Γ
      =
      E

      [
      Z

      Z


      H



      ]


      {\displaystyle \Gamma =\operatorname {E} [ZZ^{\mathrm {H} }]}

      and



      C
      =
      E

      [
      Z

      Z


      T



      ]


      {\displaystyle C=\operatorname {E} [ZZ^{\mathrm {T} }]}

      .
      The modulus of a complex normal random variable follows a Hoyt distribution.


      Circularly-symmetric central case




      = Definition

      =
      A complex random vector




      Z



      {\displaystyle \mathbf {Z} }

      is called circularly symmetric if for every deterministic



      φ

      [

      π
      ,
      π
      )


      {\displaystyle \varphi \in [-\pi ,\pi )}

      the distribution of




      e


      i

      φ



      Z



      {\displaystyle e^{\mathrm {i} \varphi }\mathbf {Z} }

      equals the distribution of




      Z



      {\displaystyle \mathbf {Z} }

      .: pp. 500–501 

      Central normal complex random vectors that are circularly symmetric are of particular interest because they are fully specified by the covariance matrix



      Γ


      {\displaystyle \Gamma }

      .
      The circularly-symmetric (central) complex normal distribution corresponds to the case of zero mean and zero relation matrix, i.e.



      μ
      =
      0


      {\displaystyle \mu =0}

      and



      C
      =
      0


      {\displaystyle C=0}

      .: p. 507  This is usually denoted





      Z




      C
      N


      (
      0
      ,

      Γ
      )


      {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,\,\Gamma )}



      = Distribution of real and imaginary parts

      =
      If




      Z

      =

      X

      +
      i

      Y



      {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} }

      is circularly-symmetric (central) complex normal, then the vector



      [

      X

      ,

      Y

      ]


      {\displaystyle [\mathbf {X} ,\mathbf {Y} ]}

      is multivariate normal with covariance structure






      (




      X






      Y




      )







      N




      (




      [



      0




      0



      ]


      ,




      1
      2





      [



      Re

      Γ



      Im

      Γ




      Im

      Γ


      Re

      Γ



      ]




      )




      {\displaystyle {\begin{pmatrix}\mathbf {X} \\\mathbf {Y} \end{pmatrix}}\ \sim \ {\mathcal {N}}{\Big (}{\begin{bmatrix}0\\0\end{bmatrix}},\ {\tfrac {1}{2}}{\begin{bmatrix}\operatorname {Re} \,\Gamma &-\operatorname {Im} \,\Gamma \\\operatorname {Im} \,\Gamma &\operatorname {Re} \,\Gamma \end{bmatrix}}{\Big )}}


      where



      Γ
      =
      E

      [

      Z



      Z



      H



      ]


      {\displaystyle \Gamma =\operatorname {E} [\mathbf {Z} \mathbf {Z} ^{\mathrm {H} }]}

      .


      = Probability density function

      =
      For nonsingular covariance matrix



      Γ


      {\displaystyle \Gamma }

      , its distribution can also be simplified as: p. 508 





      f


      Z



      (

      z

      )
      =



      1


      π

      n


      det
      (
      Γ
      )






      e


      (

      z



      μ


      )


      H




      Γ


      1


      (

      z



      μ

      )




      {\displaystyle f_{\mathbf {Z} }(\mathbf {z} )={\tfrac {1}{\pi ^{n}\det(\Gamma )}}\,e^{-(\mathbf {z} -\mathbf {\mu } )^{\mathrm {H} }\Gamma ^{-1}(\mathbf {z} -\mathbf {\mu } )}}

      .
      Therefore, if the non-zero mean



      μ


      {\displaystyle \mu }

      and covariance matrix



      Γ


      {\displaystyle \Gamma }

      are unknown, a suitable log likelihood function for a single observation vector



      z


      {\displaystyle z}

      would be




      ln

      (
      L
      (
      μ
      ,
      Γ
      )
      )
      =

      ln

      (
      det
      (
      Γ
      )
      )





      (
      z

      μ
      )

      ¯





      Γ


      1


      (
      z

      μ
      )

      n
      ln

      (
      π
      )
      .


      {\displaystyle \ln(L(\mu ,\Gamma ))=-\ln(\det(\Gamma ))-{\overline {(z-\mu )}}'\Gamma ^{-1}(z-\mu )-n\ln(\pi ).}


      The standard complex normal (defined in Eq.1) corresponds to the distribution of a scalar random variable with



      μ
      =
      0


      {\displaystyle \mu =0}

      ,



      C
      =
      0


      {\displaystyle C=0}

      and



      Γ
      =
      1


      {\displaystyle \Gamma =1}

      . Thus, the standard complex normal distribution has density





      f

      Z


      (
      z
      )
      =



      1
      π




      e




      z
      ¯


      z


      =



      1
      π




      e



      |

      z


      |


      2




      .


      {\displaystyle f_{Z}(z)={\tfrac {1}{\pi }}e^{-{\overline {z}}z}={\tfrac {1}{\pi }}e^{-|z|^{2}}.}



      = Properties

      =
      The above expression demonstrates why the case



      C
      =
      0


      {\displaystyle C=0}

      ,



      μ
      =
      0


      {\displaystyle \mu =0}

      is called “circularly-symmetric”. The density function depends only on the magnitude of



      z


      {\displaystyle z}

      but not on its argument. As such, the magnitude




      |

      z

      |



      {\displaystyle |z|}

      of a standard complex normal random variable will have the Rayleigh distribution and the squared magnitude




      |

      z


      |


      2




      {\displaystyle |z|^{2}}

      will have the exponential distribution, whereas the argument will be distributed uniformly on



      [

      π
      ,
      π
      ]


      {\displaystyle [-\pi ,\pi ]}

      .
      If




      {



      Z


      1


      ,

      ,


      Z


      k



      }



      {\displaystyle \left\{\mathbf {Z} _{1},\ldots ,\mathbf {Z} _{k}\right\}}

      are independent and identically distributed n-dimensional circular complex normal random vectors with



      μ
      =
      0


      {\displaystyle \mu =0}

      , then the random squared norm




      Q
      =



      j
      =
      1


      k




      Z


      j



      H





      Z


      j


      =



      j
      =
      1


      k





      Z


      j





      2




      {\displaystyle Q=\sum _{j=1}^{k}\mathbf {Z} _{j}^{\mathrm {H} }\mathbf {Z} _{j}=\sum _{j=1}^{k}\|\mathbf {Z} _{j}\|^{2}}


      has the generalized chi-squared distribution and the random matrix




      W
      =



      j
      =
      1


      k




      Z


      j




      Z


      j



      H





      {\displaystyle W=\sum _{j=1}^{k}\mathbf {Z} _{j}\mathbf {Z} _{j}^{\mathrm {H} }}


      has the complex Wishart distribution with



      k


      {\displaystyle k}

      degrees of freedom. This distribution can be described by density function




      f
      (
      w
      )
      =



      det
      (

      Γ


      1



      )

      k


      det
      (
      w

      )

      k

      n





      π

      n
      (
      n

      1
      )

      /

      2





      j
      =
      1


      k


      (
      k

      j
      )
      !





      e


      tr

      (

      Γ


      1


      w
      )




      {\displaystyle f(w)={\frac {\det(\Gamma ^{-1})^{k}\det(w)^{k-n}}{\pi ^{n(n-1)/2}\prod _{j=1}^{k}(k-j)!}}\ e^{-\operatorname {tr} (\Gamma ^{-1}w)}}


      where



      k

      n


      {\displaystyle k\geq n}

      , and



      w


      {\displaystyle w}

      is a



      n
      ×
      n


      {\displaystyle n\times n}

      nonnegative-definite matrix.


      See also


      Complex normal ratio distribution
      Directional statistics § Distribution of the mean (polar form)
      Normal distribution
      Multivariate normal distribution (a complex normal distribution is a bivariate normal distribution)
      Generalized chi-squared distribution
      Wishart distribution
      Complex random variable


      References

    Kata Kunci Pencarian: