• Source: Hermite transform
    • In mathematics, the Hermite transform is an integral transform named after the mathematician Charles Hermite that uses Hermite polynomials




      H

      n


      (
      x
      )


      {\displaystyle H_{n}(x)}

      as kernels of the transform.
      The Hermite transform



      H
      {
      F
      (
      x
      )
      }


      f

      H


      (
      n
      )


      {\displaystyle H\{F(x)\}\equiv f_{H}(n)}

      of a function



      F
      (
      x
      )


      {\displaystyle F(x)}

      is




      H
      {
      F
      (
      x
      )
      }


      f

      H


      (
      n
      )
      =











      e



      x

      2






      H

      n


      (
      x
      )

      F
      (
      x
      )

      d
      x


      {\displaystyle H\{F(x)\}\equiv f_{H}(n)=\int _{-\infty }^{\infty }e^{-x^{2}}\ H_{n}(x)\ F(x)\ dx}


      The inverse Hermite transform




      H


      1


      {

      f

      H


      (
      n
      )
      }


      {\displaystyle H^{-1}\{f_{H}(n)\}}

      is given by





      H


      1


      {

      f

      H


      (
      n
      )
      }

      F
      (
      x
      )
      =



      n
      =
      0







      1



      π



      2

      n


      n
      !




      f

      H


      (
      n
      )

      H

      n


      (
      x
      )


      {\displaystyle H^{-1}\{f_{H}(n)\}\equiv F(x)=\sum _{n=0}^{\infty }{\frac {1}{{\sqrt {\pi }}2^{n}n!}}f_{H}(n)H_{n}(x)}




      Some Hermite transform pairs




      References




      Sources


      Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz [in German]; Tricomi, Francesco G. (1955), Higher transcendental functions (PDF), vol. II, McGraw-Hill, ISBN 978-0-07-019546-2, archived from the original (PDF) on 2011-07-14, retrieved 2023-11-09

    Kata Kunci Pencarian: