- Source: Wahana peluncur antariksa
Kendaraan peluncur biasanya adalah kendaraan bertenaga roket yang dirancang untuk membawa muatan (pesawat antariksa berawak maupun kargo tidak beraak atau satelit) dari permukaan Bumi atau atmosfer bawah ke luar angkasa. Bentuk yang paling umum adalah roket multitahap berbentuk rudal balistik, tetapi istilahnya lebih umum dan juga mencakup kendaraan seperti Pesawat Ulang Alik. Sebagian besar kendaraan peluncur beroperasi dari landasan peluncuran, didukung oleh pusat kendali peluncuran dan sistem seperti perakitan dan pengisian bahan bakar kendaraan. Kendaraan peluncur direkayasa dengan aerodinamika dan teknologi canggih, yang berkontribusi pada biaya operasi yang tinggi.
Kendaraan peluncur orbital harus mengangkat muatannya setidaknya ke batas ruang angkasa, sekitar 150 km (93 mil) dan mempercepatnya ke kecepatan horizontal setidaknya 7.814 m/s (17.480 mph). Kendaraan suborbital meluncurkan muatannya ke kecepatan yang lebih rendah atau diluncurkan pada sudut elevasi yang lebih besar dari horizontal.
Kendaraan peluncur orbital praktis menggunakan propelan kimia seperti bahan bakar padat, kriogenik temperatur rendah hidrogen cair, minyak tanah, metana cair, oksigen cair, atau propelan hipergolik yang mudah terbakar karena reaksi.
= Kendaraan peluncur methalox
=Penggunaan metana cair dan oksigen cair sebagai propelan terkadang disebut propulsi methalox. Metana cair memiliki impuls spesifik yang lebih rendah daripada hidrogen cair, tetapi lebih mudah disimpan karena titik didih dan kepadatannya yang lebih tinggi, serta tidak mudah rapuh. Metana cair juga meninggalkan lebih sedikit residu di mesin dibandingkan dengan minyak tanah, yang bermanfaat untuk penggunaan ulang.
Metana cair yang dimurnikan dan juga LNG digunakan sebagai bahan bakar propelan kriogenik temperatur rendah roket, bila dikombinasikan dengan oksigen cair, seperti pada mesin TQ-12, BE-4, Raptor, dan YF-215. Karena kesamaan antara metana dan LNG, mesin-mesin tersebut umumnya dikelompokkan bersama di bawah istilah methalox.
Sebagai bahan bakar roket cair, kombinasi metana/oksigen cair menawarkan keuntungan dibandingkan kombinasi minyak tanah/oksigen cair, atau kerolox, dalam menghasilkan molekul-molekul gas buang kecil, mengurangi kokas atau pengendapan jelaga pada komponen-komponen mesin. Metana lebih mudah disimpan daripada hidrogen karena titik didih dan kepadatannya yang lebih tinggi, serta tidak adanya kerapuhan hidrogen. Berat molekul gas buang yang lebih rendah juga meningkatkan fraksi energi panas yang berupa energi kinetik yang tersedia untuk propulsi, sehingga meningkatkan impuls spesifik roket. Dibandingkan dengan hidrogen cair, energi spesifik metana lebih rendah tetapi kekurangan ini diimbangi oleh kepadatan dan kisaran suhu metana yang lebih besar, yang memungkinkan tangki yang lebih kecil dan lebih ringan untuk massa bahan bakar tertentu. Metana cair memiliki kisaran suhu (91–112 K) yang hampir sesuai dengan oksigen cair (54–90 K). Bahan bakar ini saat ini digunakan dalam kendaraan peluncur operasional seperti Zhuque-2 dan Vulcan serta peluncur yang sedang dikembangkan seperti Starship, Neutron, dan Terran R.
Karena keuntungan yang ditawarkan bahan bakar metana, beberapa penyedia peluncuran ruang angkasa swasta bertujuan untuk mengembangkan sistem peluncuran berbasis metana selama tahun 2010-an dan 2020-an. Persaingan antarnegara ini dijuluki sebagai Perlombaan Methalox menuju Orbit, dengan roket methalox Zhuque-2 milik LandSpace menjadi yang pertama mencapai orbit.
Pada Januari 2024, dua roket berbahan bakar metana telah mencapai orbit. Beberapa roket lainnya sedang dalam tahap pengembangan dan dua upaya peluncuran orbital gagal:
Zhuque-2 berhasil mencapai orbit pada penerbangan keduanya pada 12 Juli 2023, menjadi roket berbahan bakar metana pertama yang berhasil melakukannya. Roket ini gagal mencapai orbit pada penerbangan perdananya pada 14 Desember 2022. Roket yang dikembangkan oleh LandSpace ini menggunakan mesin TQ-12.
Vulcan Centaur berhasil mencapai orbit pada percobaan pertamanya, yang disebut Cert-1, pada 8 Januari 2024. Roket yang dikembangkan oleh United Launch Alliance ini menggunakan mesin BE-4 milik Blue Origin, meskipun tahap kedua menggunakan hydrolox RL10.
Terran 1 mengalami kegagalan dalam upaya peluncuran orbital pada penerbangan perdananya pada 22 Maret 2023. Roket yang dikembangkan oleh Relativity Space ini menggunakan mesin Aeon 1.
Starship mencapai orbit transatmosfer pada penerbangan ketiganya pada 14 Maret 2024, setelah dua kali gagal. Roket yang dikembangkan oleh SpaceX ini menggunakan mesin Raptor.
SpaceX mengembangkan mesin Raptor untuk wahana peluncur superberat Starship. Mesin ini telah digunakan dalam uji terbang sejak 2019. SpaceX sebelumnya hanya menggunakan RP-1/LOX pada mesin mereka. Blue Origin mengembangkan mesin BE-4 LOX/LNG untuk New Glenn dan United Launch Alliance Vulcan Centaur. BE-4 akan menghasilkan daya dorong sebesar 2.400 kN (550.000 lbf). Dua mesin penerbangan telah dikirim ke ULA pada pertengahan tahun 2023.
Pada bulan Juli 2014, Firefly Space Systems mengumumkan rencana untuk menggunakan bahan bakar metana untuk kendaraan peluncur satelit kecil mereka, Firefly Alpha dengan desain mesin aerospike.
ESA sedang mengembangkan mesin roket methalox Prometheus 980kN yang diuji coba pada tahun 2023.
= Tahap atas
=Roket tahap atas atau Tahap atas saja adalah roket tahap sekunder dalam roket multi tahap yang mendorong muatan ke orbit atau pada lintasan antarplanet. Tahap ini diaktifkan setelah tahap primer terpisah. Tahap atas mendorong muatan ke orbit yang lebih tinggi atau pada lintasan antarplanet daripada yang dapat dilakukan oleh pendorong roket sendiri. Tahap atas sering kali dapat retart menghidupkan kembali mesinnya beberapa kali dan dapat diatur thortle daya dorongnya saat berada di luar angkasa untuk penempatan pesawat ruang angkasa yang presisi ke orbit. Beberapa tahap atas tetap melekat pada muatannya dan menyediakan layanan seperti daya, komunikasi, dan kendali arah.
Muatan
Untuk roket, muatan dapat berupa satelit, probe antariksa, atau wahana antariksa yang membawa manusia, hewan, atau kargo. Salah satu manfaat utama muatan adalah memungkinkan kita untuk mengumpulkan data dan melakukan eksperimen di lingkungan yang tidak dapat diakses oleh manusia. Dengan mengirimkan muatan ke luar angkasa, kita dapat mempelajari tentang benda-benda langit lainnya dan kondisi yang ada di ruang hampa.
= Centaur (tahapan roket)
=Centaur adalah keluarga roket tahap atas yang telah digunakan sejak 1962. Saat ini diproduksi oleh penyedia layanan peluncuran AS United Launch Alliance, dengan satu versi utama aktif dan satu versi dalam pengembangan. Common Centaur/Centaur III berdiameter 3,05 m (10,0 kaki) terbang sebagai tingkat atas kendaraan peluncur Atlas V, dan Centaur V berdiameter 5,4 m (18 kaki) telah dikembangkan sebagai tingkat atas roket Vulcan baru ULA. Centaur adalah tingkat roket pertama yang menggunakan propelan hidrogen cair (LH 2) dan oksigen cair (LOX), kombinasi propelan berenergi tinggi yang ideal untuk tingkat atas tetapi memiliki kesulitan penanganan yang signifikan. Centaur adalah tahap atas energi tinggi pertama di dunia, pembakaran hidrogen cair (LH2) dan oksigen cair (LOX), dan telah memungkinkan peluncuran beberapa misi ilmiah paling penting NASA.
Common Centaur dibangun di sekitar tangki propelan balon bertekanan baja tahan karat yang distabilkan dengan dinding setebal 0,51 mm (0,020 in). Ia dapat mengangkat muatan hingga 19.000 kg (42.000 lb). Dinding tipis meminimalkan massa tangki, memaksimalkan kinerja keseluruhan panggung tahapan.
Sekat umum memisahkan tangki LOX dan LH 2, yang selanjutnya mengurangi massa tangki. Sekat ini terbuat dari dua kulit baja tahan karat yang dipisahkan oleh sarang lebah fiberglass. Sarang lebah fiberglass meminimalkan perpindahan panas antara LH 2 yang sangat dingin dan LOX yang kurang dingin.
Sistem propulsi utamanya terdiri dari satu atau dua mesin Aerojet Rocketdyne RL10. Tahap ini mampu melakukan hingga dua belas kali restart, dibatasi oleh propelan, masa pakai orbital, dan persyaratan misi. Dikombinasikan dengan isolasi tangki propelan, hal ini memungkinkan Centaur untuk melakukan peluncuran selama beberapa jam dan beberapa pembakaran mesin yang diperlukan pada penyisipan orbital yang kompleks.
Sistem kendali reaksi (RCS) juga menyediakan ullage dan terdiri dari dua puluh pendorong monopropelan hidrazin yang terletak di sekitar panggung dalam dua pod pendorong 2 dan empat pod pendorong 4. Untuk propelan, 150 kg (340 lb) Hidrazin disimpan dalam sepasang tangki kandung kemih dan diumpankan ke pendorong RCS dengan gas helium bertekanan, yang juga digunakan untuk menyelesaikan beberapa fungsi mesin utama.
Pada tahun 2024, dua varian Centaur digunakan: Centaur III pada Atlas V, dan Centaur V pada Vulcan Centaur. Semua varian Centaur lainnya telah dihentikan.
Mesin Centaur telah berevolusi dari waktu ke waktu, dan tiga versi (RL10A-4-2, RL10C-1 dan RL10C-1-1) digunakan pada tahun 2024 (lihat tabel di bawah). Semua versi menggunakan hidrogen cair dan oksigen cair.
Jenis kendaraan peluncuran
Peluncuran kendaraan, kendaraan peluncur khususnya orbital, memiliki minimal dua tahap, tetapi kadang-kadang sampai 4.
= Dengan platform peluncuran
=Darat: Spaceport dan silo rudal tetap (Strela) untuk dikonversi ICBM
Laut: Platform tetap (San Marco), platform mobile (Sea Launch), kapal selam (Shtil', Volna) untuk dikonversi SLBM
Udara: Pesawat (Pegasus, Virgin Galactic LauncherOne, Stratolaunch Sistem), balon (ARCASPACE), JP Aerospace Orbital Ascender, proposal permanen pelabuhan ruang angkasa Buoyant
= Dengan ukuran
=Ada banyak cara untuk mengklasifikasikan ukuran kendaraan peluncuran. The Komisi Agustinus yang diciptakan untuk meninjau rencana untuk mengganti Space Shuttle, menggunakan skema klasifikasi berikut:
Roket sonda tidak dapat mencapai orbit dan hanya mampu spaceflight sub-orbital.
Kendaraan peluncur angkut ringan mampu mengangkut hingga 2.000 kg (£ 4400) dari muatan ke orbit bumi rendah (LEO).
Kendaraan peluncur angkut medium mampu mengangkut antara 2.000 sampai 20.000 kg (4.400 sampai £ 44.000) dari muatan ke LEO.
Kendaraan peluncur angkut berat mampu mengangkut antara 20.000 sampai 50.000 kg (44.000 sampai £ 110.200) dari muatan ke LEO.
Kendaraan peluncur angkut superberat mampu mengangkut lebih dari 50.000 kg (110.200 £ +) dari muatan ke LEO.
Perakitan
Setiap tahap roket individu umumnya dikumpulkan di lokasi pabrik dan dikirim ke lokasi peluncuran; jangka waktu perakitan kendaraan mengacu pada penggabungan tahap roket dengan muatan pesawat ruang angkasa dalam satu kendaraan perakitan yang dikenal sebagai kendaraan ruang angkasa.
Kendaraan tahap tunggal (seperti sounding roket), dan kendaraan multi tahap mulai yang lebih kecil dari berbagai ukuran, biasanya dapat dirakit secara vertikal, langsung di landasan peluncuran dengan mengangkat setiap tahap pesawat ruang angkasa dan secara berurutan di tempat dengan cara diderek.
Perbandingan sistem peluncur orbital
Keterangan singkatan orbit dalam tabel:
Legend for launch system status in below table: [under development] — [retired] — [operational]
Persaingan pasar peluncuran antariksa
Persaingan pasar peluncuran antariksa merupakan manifestasi kekuatan pasar dalam bisnis penyedia layanan peluncuran. Secara khusus, tren dinamika persaingan di antara kemampuan transportasi muatan dengan harga yang beragam memiliki pengaruh yang lebih besar pada pembelian peluncuran daripada pertimbangan politik tradisional negara pembuat atau entitas nasional yang menggunakan, mengatur, atau memberi lisensi layanan peluncuran.
Setelah munculnya teknologi penerbangan antariksa pada akhir tahun 1950-an, layanan peluncuran antariksa muncul, secara eksklusif oleh program nasional. Kemudian pada abad ke-20, operator komersial menjadi pelanggan penting penyedia peluncuran. Persaingan internasional untuk subset muatan satelit komunikasi dari pasar peluncuran semakin dipengaruhi oleh pertimbangan komersial. Namun, bahkan selama periode ini, untuk satelit komunikasi yang diluncurkan oleh komersial dan entitas pemerintah, penyedia layanan peluncuran untuk muatan ini menggunakan kendaraan peluncur yang dibuat sesuai spesifikasi pemerintah, dan dengan pendanaan pengembangan yang disediakan negara secara eksklusif.
Pada awal tahun 2010-an, lima dekade setelah manusia pertama kali mengembangkan teknologi penerbangan antariksa, sistem kendaraan peluncur yang dikembangkan secara pribadi dan penawaran layanan peluncuran antariksa muncul. Perusahaan kini menghadapi insentif ekonomi, bukan insentif politik seperti pada dekade-dekade sebelumnya. Bisnis peluncuran antariksa mengalami penurunan harga per unit yang drastis, bersamaan dengan penambahan kemampuan yang sama sekali baru, yang membawa babak baru persaingan di pasar peluncuran antariksa.
Pada tahun 2024 dilaporkan bahwa, dengan menghitung semua aktivitas peluncuran dan penerbangan antariksa global, SpaceX, yang memanfaatkan keluarga roket Falcon miliknya, telah meluncurkan hampir 87% dari semua upmass di Bumi pada tahun 2023.
Lihat pula
Roket
Mesin roket
Pelabuhan angkasa
Catatan
Referensi
Pranala luar
https://web.archive.org/web/20100805045010/http://cryptome.org/eyeball/satspy/satspy-eyeball.htm
S. A. Kamal, A. Mirza: The Multi-Stage-Q System and the Inverse-Q System for Possible application in SLV Diarsipkan 2010-04-14 di Wayback Machine., Proc. IBCAST 2005, Volume 3, Control and Simulation, Edited by Hussain SI, Munir A, Kiyani J, Samar R, Khan MA, National Center for Physics, Bhurban, KP, Pakistan, 2006, pp 27–33 Free Full Text
S. A. Kamal: Incorporating Cross-Range Error in the Lambert Scheme Diarsipkan 2010-04-14 di Wayback Machine., Proc. 10th National Aeronautical Conf., Edited by Sheikh SR, Khan AM, Pakistan Air Force Academy, Risalpur, KP, Pakistan, 2006, pp 255–263 Free Full Text
S. A. Kamal: The Multi-Stage-Lambert Scheme for Steering a Satellite-Launch Vehicle Diarsipkan 2010-04-14 di Wayback Machine., Proc. 12th IEEE INMIC, Edited by Anis MK, Khan MK, Zaidi SJH, Bahria Univ., Karachi, Pakistan, 2008, pp 294–300 (invited paper) Free Full Text
S. A. Kamal: Incompleteness of Cross-Product Steering and a Mathematical Formulation of Extended-Cross-Product Steering Diarsipkan 2010-04-14 di Wayback Machine., Proc. IBCAST 2002, Volume 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Edited by Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, pp 167–177 Free Full Text
S. A. Kamal: Dot-Product Steering: A New Control Law for Satellites and Spacecrafts Diarsipkan 2010-04-14 di Wayback Machine., Proc. IBCAST 2002, Volume 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Edited by Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, pp 178–184 Free Full Text
S. A. Kamal: Ellipse-Orientation Steering: A Control Law for Spacecrafts and Satellite-Launch Vehicles Diarsipkan 2010-04-14 di Wayback Machine., Space Science and the Challenges of the twenty-First Century, ISPA-SUPARCO Collaborative Seminar, Univ. of Karachi, 2005 (invited paper)
Christmas turns bad for ISRO, GSLV mission fails.
http://themittani.com/features/satellite-extravaganza-us-vs-russia?page=0%2C1 Diarsipkan 2013-12-07 di Wayback Machine.
http://www.spacelaunchreport.com/dnepr.html
http://www.astronautix.com/articles/costhing.htm Encyclopedia Astronautica: Cost, Price, and the Whole Darn Thing
Kata Kunci Pencarian:
- Wahana peluncur antariksa
- Wahana antariksa
- Wahana peluncur pakai ulang
- Galileo (wahana antariksa)
- SpaceX
- Pesawat Ulang Alik
- Badan Penerbangan dan Antariksa
- Voyager 1
- Elon Musk
- Wahana antariksa kargo